We observed that the polarization state of light after round-trip propagation through a birefringent medium frequently aligns with the employed input polarization state 'mirrored' by the horizontal plane of the Poincaré sphere. We explored the predisposition for this mirror state and evidence that it constrains the evolution of polarization states as a function of the round-trip depth into weakly scattering birefringent samples, as measured with polarization-sensitive optical coherence tomography (PS-OCT). Combined with spectral variations in the polarization state transmitted through system components, we demonstrate how this constraint enables measurement of depth-resolved birefringence using only a single input polarization state, which offers a critical simplification compared to conventional PS-OCT employing two input states.
View Article and Find Full Text PDFNano-structures of biological systems can produce diverse spectroscopic effects through interactions with broadband light. Although structured coloration at the surface has been extensively studied, natural spectroscopic contrasts in deep tissues are poorly understood, which may carry valuable information for evaluating the anatomy and function of biological systems. Here we investigated the spectroscopic characteristics of an important geometry in deep tissues at the nanometer scale: packed nano-cylinders, in the near-infrared window, numerically predicted and experimentally proved that transversely oriented and regularly arranged nano-cylinders could selectively backscatter light of the long wavelengths.
View Article and Find Full Text PDFOur ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular-level structural details of GI mucosa over a large tissue area. In this article, we report a fiber-optic-based micro-optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular-level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.
View Article and Find Full Text PDF