The effect of methoxy and hydroxy substitutions in different positions of the phenoxy moiety of the N-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-phenoxyethan-1-amine scaffold on the affinity/activity for D-like, 5-HT, and α-adrenoceptor subtypes was evaluated. Multitarget compounds with suitable combinations of dopaminergic and serotoninergic profiles were discovered. In particular, the 2-methoxy derivative 3 showed a multitarget combination of 5-HT/D agonism and D/D/5-HT antagonism, which may be a favorable profile for the treatment of schizophrenia.
View Article and Find Full Text PDFAim: Targeting 5-HT receptor (5-HTR) as a strategy for CNS disorders and pain control.
Methodology: A series of 1,3-dioxolane-based 2-heteroaryl-phenoxyethylamines was synthesized by a convergent approach and evaluated at α-adrenoceptors and 5-HTR by binding and functional experiments. Absorption, distribution, metabolism, excretion and toxicity prediction studies were performed to explore the drug-likeness of the compounds.
A new series of spirocyclic σ receptor (σR) ligands were prepared and studied. Most were found to have a high affinity and selectivity for σ R; three compounds were shown to be σ R agonists, while another proved to be the only σ R antagonist. Only one of the σ R agonists (BS148) also exhibited σ R selectivity and was able to inhibit the growth of metastatic malignant melanoma cell lines without affecting normal human melanocytes.
View Article and Find Full Text PDFNew α-adrenoreceptor (α-AR) antagonists related to prazosin and doxazosin were synthesized by replacing piperazine ring with (S)- or (R)-3-aminopiperidine. Binding studies indicated that the S configuration at the 3-C position of the piperidine ring is crucial for an optimal interaction of the compounds at all three α-AR subtypes. Quinazolines 9 and 10, bearing a quinone ring on the lateral chain, exhibited also potent antiproliferative activity in LNCaP androgen-sensitive prostate cancer cell lines, higher than that of doxazosin.
View Article and Find Full Text PDFThe involvement of the serotonin 5-HT receptor (5-HT -R) in the antidepressant effect of allyphenyline and its analogues indicates that ligands bearing the 2-substituted imidazoline nucleus as a structural motif interact with 5-HT -R. Therefore, we examined the 5-HT -R profile of several imidazoline molecules endowed with a common scaffold consisting of an aromatic moiety linked to the 2-position of an imidazoline nucleus by a biatomic bridge. Our aim was to discover other ligands targeting 5-HT -R and to identify the structural features favoring 5-HT -R interaction.
View Article and Find Full Text PDFRecently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a potent 5-HTR agonist with a moderate 5-HTR selectivity. In an extension of this work a series of derivatives of 1, obtained by combining different heterocyclic rings with a more flexible amine chain, was synthesized and tested for binding affinity and activity at 5-HTR and α adrenoceptors. The results led to the identification of 14 and 15 as novel 5-HTR partial agonists, the first being outstanding for selectivity (5-HT/α = 80), the latter for potency (pD = 9.
View Article and Find Full Text PDFN-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine (3) is a potent 5-HT receptor and α-adrenoceptor (α-AR) ligand. Analogues 5-10 were rationally designed and prepared to evaluate whether electronic and/or lipophilic properties of substituents in the ortho position of its phenoxy moiety exert any favorable effects on the affinity/activity at 5-HT receptor and improve selectivity over α-ARs. To rationalize the experimental observations and derive information about receptor-ligand interactions of the reported ligands, docking studies, using 5-HT and α-AR models generated by homology techniques, and a retrospective computational study were performed.
View Article and Find Full Text PDFArylpiperazines 2-11 were synthesized, and their biological profiles at α1-adrenergic receptors (α1-ARs) assessed by binding assays in CHO cells expressing human cloned subtypes and by functional experiments in isolated rat vas deferens (α1A), spleen (α1B), and aorta (α1D). Modifications at the 1,3-benzodioxole and phenyl phamacophoric units resulted in the identification of a number of potent compounds (moderately selective with respect to the α1b-AR), in binding experiments. Notably, compound 7 (LDT451) showed a subnanomolar pKi of 9.
View Article and Find Full Text PDFObjective: The purpose of this study was to decrease problematic benzodiazepine (BZD) prescriptions provided to patients enrolled in methadone maintenance treatment (MMT) programs in an urban setting through a quality improvement intervention.
Methods: A prospective, interactive, feedback loop was used with 4 MMT providers over a period of 5 years (2009-2013) to help reduce the number of BZD prescriptions that clients were receiving from other providers. To track individuals who were receiving a BZD prescription from an outside provider, MMT medical teams were provided with patient-level Medicaid pharmacy claims data every month for 5 years.
Unlabelled: Mirror neurons (MNs) in the inferior parietal lobule and ventral premotor cortex (PMv) can code the intentions of other individuals using contextual cues. Gaze direction is an important social cue that can be used for understanding the meaning of actions made by other individuals. Here we addressed the issue of whether PMv MNs are influenced by the gaze direction of another individual.
View Article and Find Full Text PDFHerein we report the synthesis and biological activity of new sigma receptor (σR) ligands obtained by combining different substituted five-membered heterocyclic rings with appropriate σR pharmacophoric amines. Radioligand binding assay, performed on guinea pig brain membranes, identified 25b (1-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperazine) as the most interesting compound of the series, displaying high affinity and selectivity for σ1R (pKiσ1 = 9.
View Article and Find Full Text PDFMetabotropic glutamate receptor 5 (mGlu5) is a biological target implicated in major neurological and psychiatric disorders. In the present study, we have investigated structural determinants of the interaction of negative allosteric modulators (NAMs) with the seven-transmembrane (7TM) domain of mGlu5. A homology model of the 7TM receptor domain built on the crystal structure of the mGlu1 template was obtained, and the binding modes of known NAMs, namely MPEP and fenobam, were investigated by docking and molecular dynamics simulations.
View Article and Find Full Text PDFBackground: Although the number of physicians credentialed to prescribe buprenorphine has increased over time, many credentialed physicians may be reluctant to treat individuals with opioid use disorders due to discomfort with prescribing buprenorphine. Although prescribing physicians are required to complete a training course, many have questions about buprenorphine and treatment guidelines have not been updated to reflect clinical experience in recent years. We report on an expert panel process to update and expand buprenorphine guidelines.
View Article and Find Full Text PDFRecently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a highly selective and potent 5-HT1AR ligand. In the present work we adopted an in-parallel synthetic strategy to rapidly explore a new set of arylpiperazine (7-32) that is structurally related to 1. The compounds were tested for binding affinity and functional activity at 5-HT1AR and α
Primary effusion lymphoma (PEL) is a rare B-cell neoplasm in which tumor cells are consistently infected by Kaposi's sarcoma-associated herpesvirus and usually grow in body cavities without tumor mass formation. To detect new proteins related to pathogenesis, four established cell lines from PEL (CRO-AP2, CRO-AP3, CRO-AP5, and CRO-AP6) were characterized by proteomics analysis of the secretome. The secretomes were analyzed using two complementary mass spectrometry platforms: liquid chromatography-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight-based approaches.
View Article and Find Full Text PDFA series of aralkylphenoxyethylamine and aralkylmethoxyphenylpiperazine compounds was synthesized and their in vitro pharmacological profile at both 5-HT(1A) receptors and α(1)-adrenoceptor subtypes was measured by binding assay and functional studies. The results showed that the replacement of the 1,3-dioxolane ring by a tetrahydrofuran, cyclopentanone, or cyclopentanol moiety leads to an overall reduction of in vitro affinity at the α(1)-adrenoceptor while both potency and efficacy were increased at the 5-HT(1A) receptor. A significant improvement of 5-HT(1A)/α(1) selectivity was observed in some of the cyclopentanol derivatives synthesized (4acis, 4ccis and trans).
View Article and Find Full Text PDFA series of 1,3-dioxolane-based compounds incorporating a lactam (2-4) or imide (5-7) moiety was synthesized and the pharmacological profile at alpha(1)-adrenoceptor subtypes and 5-HT(1A) receptor was assessed through binding and functional experiments. Starting from the 2,2-diphenyl-1,3-dioxolane derivative 1, previously shown to be a selective alpha(1a(A))/alpha(1d(D))-adrenoceptor subtype antagonist, over alpha(1b(B)) subtype and 5-HT(1A) receptor, and replacing one phenyl ring with lactam or imide moiety a reduction of alpha(1)/5-HT(1A) selectivity is observed, mainly due to the increase in 5-HT(1A) affinity. In functional experiments lactam derivatives seems to favour 5-HT(1A) receptor antagonism (pKb = 7.
View Article and Find Full Text PDFStarting from compounds previously identified as alpha(1)-adrenoceptor antagonists that were also found to bind to the 5-HT(1A) receptor, in an attempt to separate the two activities, a new series of 5-HT(1A) receptor agonists was identified and shown to have high potency and/or high selectivity. Of these, compound 13, which combines high selectivity (5-HT(1A)/alpha(1)=151) and good agonist potency (pD(2)=7.82; E(max)=76), was found to be the most interesting.
View Article and Find Full Text PDFStarting from compound 1, a previously reported alpha(1D)-adrenoceptors antagonist, a new series of ligands acting at 5-HT(1A) serotonin receptor were identified through simple structure modifications. Among them (2,2-diphenyl-[1,3]oxathiolan-5-yl-methyl)-(3-phenyl-propyl)amine (19) exhibits outstanding activity (pK(i)=8.72, pD(2)=7.
View Article and Find Full Text PDFThe four stereoisomers of 2-oxazolidinone 5-substituted with 1-methyl-2-pyrrolidinyl (1), of 1,4-benzodioxane 2-substituted with the same residue (2) and of the nor-methyl analogue of this latter (2a) were synthesized as candidate nicotinoids. Of the 12 compounds, two N-methylated pyrrolidinyl-benzodioxane stereoisomers, namely those with the same relative configuration at the pyrrolidine stereocentre as (S)-nicotine, bind at alpha4beta2 nicotinic acetylcholine receptor with submicromolar affinity. Consistently with the biological data, docking analysis enlightens significant differences in binding site interactions not only between 1 and 2, but also between 2 and 2a and between the stereoisomers of 2 accounting for the critical role played, in the case of the pyrrolidinyl-benzodioxanes, by the chirality of both the stereolabile and stereostable stereogenic atoms, namely the protonated tertiary nitrogen and the two asymmetric carbons.
View Article and Find Full Text PDFThe RS and SR enantiomers of 2-oxazolidinone and 1,4-benzodioxane bearing a 2-pyrrolidinyl substituent at the 5- and 2-position, respectively, were synthesized as candidate nicotinoids. One of the two benzodioxane stereoisomers reasonably fits the pharmacophore elements of (S)-nicotine and binds at alpha4beta2 nicotinic acetylcholine receptor with submicromolar affinity. Interestingly, both the synthesized pyrrolidinylbenzodioxanes exhibit analogous affinity at alpha(2) adrenergic receptor resembling the behaviour of some known alpha(2)-AR ligands recently proved to possess neuronal nicotinic affinity.
View Article and Find Full Text PDFThe pharmacological properties of cyclohexanecarboxylic acid, {2-[4-(2-bromo-5-methoxybenzyl)piperazin-1-yl]ethyl}-(2-trifluoromethoxyphenyl)amide (Rec 27/0224), and cyclohexanecarboxylic acid, (2-methoxy-phenyl)-{2-[4-(2-methoxyphenyl)-piperazin-1-yl]ethyl}amide (Rec 27/0074), were characterized using radioligand displacement and guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding assays, as well as electrophysiological experiments, in rat hippocampal and dorsal raphe nucleus (DRN) slices. Both compounds showed a high affinity (Ki, approximately 1 nM) and selectivity (>70-fold) at human 5-hydroxytryptamine (5-HT)1A receptors versus other 5-HT receptors. In [35S]GTPgammaS binding assays on HeLa cells stably expressing human 5-HT1A receptors, Rec 27/0224 and Rec 27/0074 inhibited basal [35S]GTPgammaS binding by 44.
View Article and Find Full Text PDF