The widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g.
View Article and Find Full Text PDFCyanobacterial blooms are increasingly common in aquatic environments worldwide. These microorganisms cause concern due to their ability to produce cyanotoxins. Aquatic organisms, especially zooplankton, are exposed to cyanobacterial toxins by different routes, depending on the bloom phase.
View Article and Find Full Text PDFHarmful algal blooms are among the emerging threats to freshwater biodiversity that need to be studied further in the Anthropocene. Here, we studied freshwater plankton communities in ten tropical reservoirs to record the impact of algal blooms, comprising different phytoplankton taxa, on water quality, plankton biodiversity, and ecosystem functioning. We compared water quality parameters (water transparency, mixing depth, pH, electrical conductivity, dissolved inorganic nitrogen, total dissolved phosphorus, total phosphorus, chlorophyll-a, and trophic state), plankton structure (composition and biomass), biodiversity (species richness, diversity, and evenness), and ecosystem functioning (phytoplankton:phosphorus and zooplankton:phytoplankton ratios as a metric of resource use efficiency) through univariate and multivariate analysis of variance, and generalized additive mixed models in five different bloom categories.
View Article and Find Full Text PDFUnderstanding the importance of environmental variables on the dominance of cyanobacteria is crucial for appropriately managing water resources. Although studies about temperate and subtropical regions show a high influence of nutrients and temperature on blooms, this relationship is still unclear for the tropics. Accordingly, we hypothesized that nutrients and temperature are the main factors driving cyanobacterial blooms in tropical reservoirs, and those relationships are intensified by the zooplankton.
View Article and Find Full Text PDFBiomanipulation is an efficient tool to control eutrophication and cyanobacterial blooms in temperate lakes. However, the effects of this technique are still unclear for tropical ecosystems. Herein, we evaluated the effects of the biomanipulation on cyanobacterial biomass in a tropical shallow reservoir in Northeast Brazil.
View Article and Find Full Text PDFCyanobacterial blooms are becoming increasingly common in aquatic environments around the world, mainly due to eutrophication and climate change. Cyanotoxin-producing strains (e.g.
View Article and Find Full Text PDF