Nanomaterials (Basel)
April 2024
Significant progress has been made in two-dimensional material-based sensing devices over the past decade. Organic vapor sensors, particularly those using graphene and transition metal dichalcogenides as key components, have demonstrated excellent sensitivity. These sensors are highly active because all the atoms in the ultra-thin layers are exposed to volatile compounds.
View Article and Find Full Text PDFThe synthesis and characterization of a novel covalent organic polymer cobalt (II) phthalocyanine () including tetra amino group is described for the first time. This covalent organic polymer (COP) is characterized by FTIR, TGA, RAMAN, PXRD, and SEM-EDS. The developed sensor is tested for acetone, ethyl butyrate, hexane, chloroform, and butyraldehyde in a range of 80-10,900 ppm.
View Article and Find Full Text PDFIn this study, reduced graphene oxide (rGO) was prepared using a green ultrasonic microwave assisted method and investigated rGO based non-enzymatic electrochemical sensor for detecting a synthetic fungicide as a propamocarb (PM) pesticide. The rGO-based sensor exhibited rapid response within 1 min, low detection limit of 0.6 μM and wide linear range of (1-5) μM with a high sensitivity of 101.
View Article and Find Full Text PDFSewage treatment works are one of the major sources that cause atmospheric odour pollution. The increase in the number of complaints about odour nuisance is due to the increase in environmental concerns. Unfortunately, the legislation on odour nuisance from sewage treatment works is very limited.
View Article and Find Full Text PDF