Purpose Of Review: Spaceflight-associated neuro-ocular syndrome (SANS) encompasses a unique constellation of neuro-ocular findings in astronauts, including optic disc edema (ODE), globe flattening, chorioretinal folds, and hyperopic refractive shift. Although there are numerous neuro-ocular findings in SANS, the purpose of this review is to describe the novel, emerging concepts of the pathogenesis for the ODE specifically in SANS.
Recent Findings: While the initial hypotheses on the pathogenesis of ODE in SANS focused on possible elevated intracranial pressures (i.
Ocular health is currently a major concern for astronauts on current and future long-duration spaceflight missions. Spaceflight-associated neuro-ocular syndrome (SANS) is a collection of ophthalmic and neurologic findings that is one potential physiologic barrier to interplanetary spaceflight. Since its initial report in 2011, our understanding of SANS has advanced considerably, with a primary focus on posterior ocular imaging including fundus photography and optical coherence tomography.
View Article and Find Full Text PDFFor most people, recalling information about familiar items in a visual scene is an effortless task, but it is one that depends on coordinated interactions of multiple, distributed neural components. We leveraged the high spatiotemporal resolution of direct intracranial recordings to better delineate the network dynamics underpinning visual scene recognition. We present a dataset of recordings from a large cohort of humans while they identified images of famous landmarks (50 individuals, 52 recording sessions, 6,775 electrodes, 6,541 trials).
View Article and Find Full Text PDFGiant cell tumor of bone is a benign but locally aggressive osteolytic neoplasm that represents 3% to 5% of all primary bone tumors, primarily found at the epiphyses of long bones. Less than 1% are of calvarial origin. Herein, we report a rare case of a nine-year-old girl with a hemorrhagic giant cell tumor of the left occipital skull base.
View Article and Find Full Text PDFThe rapid recognition and memory of faces and scenes implies the engagement of category-specific computational hubs in the ventral visual stream with the distributed cortical memory network. To better understand how recognition and identification occur in humans, we performed direct intracranial recordings, in a large cohort of patients (n = 50), from the medial parietal cortex (MPC) and the medial temporal lobe (MTL), structures known to be engaged during face and scene identification. We discovered that the MPC is topologically tuned to face and scene recognition, with clusters in MPC performing scene recognition bilaterally and face recognition in right subparietal sulcus.
View Article and Find Full Text PDFCurrent models of word-production in Broca's area (i.e. left ventro-lateral prefrontal cortex, VLPFC) posit that sequential and staggered semantic, lexical, phonological and articulatory processes precede articulation.
View Article and Find Full Text PDFSemantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood.
View Article and Find Full Text PDFPrevailing theories suggests that cortical regions responsible for face perception operate in a serial, feed-forward fashion. Here, we utilize invasive human electrophysiology to evaluate serial models of face-processing via measurements of cortical activation, functional connectivity, and cortico-cortical evoked potentials. We find that task-dependent changes in functional connectivity between face-selective regions in the inferior occipital (f-IOG) and fusiform gyrus (f-FG) are bidirectional, not feed-forward, and emerge following feed-forward input from early visual cortex (EVC) to both of these regions.
View Article and Find Full Text PDFCognitive control refers to the ability to produce flexible, goal-oriented behavior in the face of changing task demands and conflicting response tendencies. A classic cognitive control experiment is the Stroop-color naming task, which requires participants to name the color in which a word is written while inhibiting the tendency to read the word. By comparing stimuli with conflicting word-color associations to congruent ones, control processes over response tendencies can be isolated.
View Article and Find Full Text PDFNeuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects.
View Article and Find Full Text PDFUnlabelled: Opinions are divided on whether word reading processes occur in a hierarchical, feedforward fashion or within an interactive framework. To critically evaluate these competing theories, we recorded electrocorticographic (ECoG) data from 15 human patients with intractable epilepsy during a word completion task and evaluated brain network dynamics across individuals. We used a novel technique of analyzing multihuman ECoG recordings to identify cortical regions most relevant to processing lexical information.
View Article and Find Full Text PDFInvasive intracranial EEG (icEEG) offers a unique opportunity to study human cognitive networks at an unmatched spatiotemporal resolution. To date, the contributions of icEEG have been limited to the individual-level analyses or cohorts whose data are not integrated in any way. Here we discuss how grouped approaches to icEEG overcome challenges related to sparse-sampling, correct for individual variations in response and provide statistically valid models of brain activity in a population.
View Article and Find Full Text PDFPurpose. To provide an ovine model of ventricular remodeling and reverse remodeling by creating congestive heart failure (CHF) and then treating it by implanting a left ventricular assist device (LVAD). Methods.
View Article and Find Full Text PDFBackground: As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve.
Materials And Methods: To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber).