This study aims to determine both short- and long-term response of enriched anammox culture to Cu. Assessment of short-term inhibition is based both on total applied Cu concentration and potential bioavailable fractions like intracellular, surface-bound, soluble and free Cu ion. The half maximal inhibitory concentration (IC50) values for total applied, soluble, intracellular and cell-associated concentrations were determined as 4.
View Article and Find Full Text PDFThis study provides insight into the short-term effects of nickel and zinc on anammox. The impacts of these heavy metals are evaluated based on their potentially bioavailable fractions, including the intracellular, surface-bound, soluble, free-ion, and weak (labile) complexes of heavy metals, in the presence of certain inorganic/organic species. Results showed that the IC50 values for soluble, intracellular, cell-associated, surface-bound, and free-ion Ni concentrations are 5.
View Article and Find Full Text PDFFor a successful nitrogen removal, Anammox process needs to be established in line with a stable partial nitritation pretreatment unit since wastewater influent is mostly unsuitable for direct treatment by Anammox. Partial nitritation is, however, a critical bottleneck for the nitrogen removal since it is often difficult to maintain the right proportions of NO-N and NH-N during long periods of time for Anammox process. This study investigated the potential of Anammox-zeolite biofilter to buffer inequalities in nitrite and ammonium nitrogen in the influent feed.
View Article and Find Full Text PDFLeachate treatment is a challenging issue due to its high pollutant loads. There are several studies on feasible treatment methods of leachate. In the scope of this study, high organic content of young leachate was eliminated using an upflow anaerobic sludge blanket (UASB) and a membrane bioreactor (MBR) in sequence and effluent of the system was given to single reactor for high activity ammonia removal over nitrite (SHARON) and anaerobic ammonia oxidation (Anammox) reactors to remove nitrogen content.
View Article and Find Full Text PDFAnammox bacteria can effectively treat high ammonia and nitrite concentrations under anoxic environments. However, the presence of high ammonia and nitrite concentrations may cause free ammonia and nitrous acid inhibition at high pH and temperature environments. In this study, the inhibitory effect of free ammonia on Anammox bacteria was investigated in a lab-scale upflow fixed-bed reactor with Kaldnes biofilm carriers.
View Article and Find Full Text PDF