Publications by authors named "Cigada A"

The increasing traffic on roads poses a significant challenge to the structural integrity of bridges and viaducts. Indirect structural monitoring offers a cost-effective and efficient solution for monitoring multiple infrastructures. The presented work aims to explore new sensing strategies based on digital MEMS sensors integrated into an intelligent IoT infrastructure to predict the bridge deflection behaviour for indirect Bridge Structural Health Monitoring purposes.

View Article and Find Full Text PDF

Axially loaded beam-like structures represent a challenging case study for unsupervised learning vibration-based damage detection. Under real environmental and operational conditions, changes in axial load cause changes in the characteristics of the dynamic response that are significantly greater than those due to damage at an early stage. In previous works, the authors proposed the adoption of a multivariate damage feature composed of eigenfrequencies of multiple vibration modes.

View Article and Find Full Text PDF

Due to the need for controlling many ageing and complex structures, structural health monitoring (SHM) has become increasingly common over the past few decades. However, one of the main limitations for the implementation of continuous monitoring systems in real-world structures is the effect that benign influences, such as environmental and operational variations (EOVs), have on damage sensitive features. These fluctuations may mask malign changes caused by structural damages, resulting in false structural condition assessment.

View Article and Find Full Text PDF

Systems for accurate attitude and position monitoring of large structures, such as bridges, tunnels, and offshore platforms are changing in recent years thanks to the exploitation of sensors based on Micro-ElectroMechanical Systems (MEMS) as an Inertial Measurement Unit (IMU). Currently adopted solutions are, in fact, mainly based on fiber optic sensors (characterized by high performance in attitude estimation to the detriment of relevant costs large volumes and heavy weights) and integrated with a Global Position System (GPS) capable of providing low-frequency or single-update information about the position. To provide a cost-effective alternative and overcome the limitations in terms of dimensions and position update frequency, a suitable solution and a corresponding prototype, exhibiting performance very close to those of the traditional solutions, are presented and described hereinafter.

View Article and Find Full Text PDF

Many researchers have proposed vibration-based damage-detection approaches for continuous structural health monitoring. Translation to real applications is not always straightforward because the proposed methods have mostly been developed and validated in controlled environments, and they have not proven to be effective in detecting real damage when considering real scenarios in which environmental and operational variations are not controlled. This work was aimed to develop a fully-automated strategy to detect damage in operating tie-rods that only requires one sensor and that can be carried out without knowledge of physical variables, e.

View Article and Find Full Text PDF

Purpose:: Development of PVA/cellulose fiber composite material with modulable properties, obtained through the increase of reinforcement and heat treatments in order to optimize the composite in terms of mechanical, thermal, and degradation properties.

Methods:: The composite was designed selecting as matrix an experimental formulation based on water-soluble, biodegradable, polyvinyl alcohol (PVA) and microcrystalline cellulose (MCC), as reinforcement. Six different formulations, with increasing ratio of MCC content (from 0% to 55% w/w) in PVA, were developed and extruded by a co-rotating twin-screw extruder (TSA FSCM 21/40).

View Article and Find Full Text PDF

Background: The aim of this work was the development and characterization of a photocatalytic filter for the treatment of indoor air, characterized by a low pressure drop.

Methods: The filter (photocatalytic filter) was based on a polyester substrate additivated with active carbon (Carbotex 150-6), treated with a sol of titanium dioxide (Sol 121-AB; NextMaterials Ltd.) and illuminated with UV LEDs to induce photocatalytic activity.

View Article and Find Full Text PDF

Background: Until now, environmental sustainability issues are almost entirely unsolved for packaging materials. With the final aim of finding materials with a single recycling channel, cellulose fiber/poly(vinyl)alcohol composites were investigated.

Methods: After extrusion and injection molding, samples of composite with different cellulose fiber content (30%, 50% and 70% w/w) were tested.

View Article and Find Full Text PDF

Neo-vascularization is a key factor in tissue regeneration within porous scaffolds. Here, we tested the hypothesis that micro-patterned scaffolds, with precisely-designed, open micro-channels, might help endothelial cells to produce intra-scaffold vascular networks. Three series of micro-patterned scaffolds were produced via electrochemical replica-deposition of chitosan and cross-linking.

View Article and Find Full Text PDF

The increasing number of total joint replacements, in particular for the knee joint, has a growing impact on the healthcare system costs. New cost-saving manufacturing technologies are being explored nowadays. Metal injection molding (MIM) has already demonstrated its suitability for the production of CoCrMo alloy tibial trays, with a significant reduction in production costs, by holding both corrosion resistance and biocompatibility.

View Article and Find Full Text PDF

Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm.

View Article and Find Full Text PDF

A linearly chirped fiber Bragg grating (LCFBG) has been used as a temperature sensor for online monitoring of radiofrequency thermal ablation (RFTA). The LCFBG acts as a distributed sensor, with spatial resolution of 75 μm. A white-light setup that records the LCFBG spectrum estimates the temperature profile in real time.

View Article and Find Full Text PDF

We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy.

View Article and Find Full Text PDF

The steady increase in the distribution of juvenile pornographic material in recent years strongly required valid methods for estimating the age of the victims. At the present in fact forensic experts still commonly use the assessment of sexual characteristics by Tanner staging, although they have proven to be too subjective and deceiving for age estimation. The objective of this study, inspired by a previous EU project involving Italy, Germany and Lithuania, is to verify the applicability of certain anthropometric indices of faces in order to determine age and to create a database of facial measurements on a population of children in order to improve face ageing techniques.

View Article and Find Full Text PDF

Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS) neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs), to improve and to tailor their viscoelastic properties upon injection and release profile.

View Article and Find Full Text PDF

Purpose: Our aim was to assess the use of injectable, biocompatible and resorbable, hydrogel-based tools for innovative therapies against brain-related neurodegenerative disorders like Alzheimer's (AD) and Parkinson's (PD) diseases.

Methods: Two compositions of semi-interpenetrating polymer networks (semi-IPNs) based on collagen and poly(ethylene glycol) (PEG) were investigated. We examined their viscoelastic properties, flow behavior, functional injectability, as well as in vitro biocompatibility with SH-SY5Y human neuroblastoma cells and murine primary neurons.

View Article and Find Full Text PDF

As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures.

View Article and Find Full Text PDF

Industrial manufacturing of prosthesis components could take significant advantage by the introduction of new, cost-effective manufacturing technologies with near net-shape capabilities, which have been developed during the last years to fulfill the needs of different technological sectors. Among them, metal injection molding (MIM) appears particularly promising for the production of orthopedic arthroplasty components with significant cost saving. These new manufacturing technologies, which have been developed, however, strongly affect the chemicophysical structure of processed materials and their resulting properties.

View Article and Find Full Text PDF

In the last years, facial analysis has gained great interest also for forensic anthropology. The application of facial landmarks may bring about relevant advantages for the analysis of 2D images by measuring distances and extracting quantitative indices. However, this is a complex task which depends upon the variability in positioning facial landmarks.

View Article and Find Full Text PDF

Purpose: Despite improvements in operative environment and surgical techniques, post-operative infections remain one of the most devastating complications in total joint replacement prostheses. Several efforts have been made to modify the surface of materials in order to prevent bacterial adhesion and colonization. Here, we show a one-pot electrochemical surface modification process for co-deposition of calcium phosphate and gentamicin, with the aim of triggering specific biological responses and imparting antibacterial properties on titanium alloy prostheses.

View Article and Find Full Text PDF

Background: Among the different causes of orthopedic and dental implant failure, infection remains the most serious and devastating complication associated with biomaterial devices.

Purpose: The aim of this study was to develop an innovative osteointegrative and antibacterial biomimetic coating on titanium and to perform a chemical-physical and in vitro biological characterization of the coating using the SAOS-2 cell line. We also studied the antibacterial properties of the coating against both Gram-positive and Gram-negative bacteria strains.

View Article and Find Full Text PDF

Purpose: Indoor Air Quality (IAQ) is strictly affected by the concentration of total suspended particulate matter (TSP). Air filtration is by far the most feasible suggestion to improve IAQ. Unfortunately, highly effective HEPA filters also have a few major weaknesses that have hindered their widespread use.

View Article and Find Full Text PDF

Purpose: Porous Shape Memory Polymers (SMPs) are ideal candidates for the fabrication of defect fillers, able to support tissue regeneration via minimally invasive approaches. In this regard, control of pore size, shape and interconnection is required to achieve adequate nutrient transport and cell ingrowth. Here, we assessed the feasibility of the preparation of SMP porous structures and characterized their chemico-physical properties and in vitro cell response.

View Article and Find Full Text PDF

Background: Titanium and its alloy represent the most commonly used biomaterials worldwide designed for bone-contact under-load applications, which often require specific mechanical properties. In particular, a large number of different biomimetic surface treatments have been developed to speed up the osteointegration process, which facilitates a reduction in recovery time.

Purpose: The aim of this work is to investigate the physical-chemical, mechanical and bioactivity properties of an innovative biomimetic treatment on titanium performed using Anodic Spark Deposition (ASD) electrochemical treatment.

View Article and Find Full Text PDF