Publications by authors named "Cichowski K"

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and has the highest rate of recurrence. The predominant standard of care for advanced TNBC is systemic chemotherapy with or without immunotherapy; however, responses are typically short lived. Thus, there is an urgent need to develop more effective treatments.

View Article and Find Full Text PDF

Combined EZH2 and RAS pathway inhibitors kill KRAS-mutant colorectal cancer cells and promote durable tumor regression in vivo. These agents function by cooperatively suppressing the WNT pathway, driving differentiation, and epigenetically reprogramming cells to permit the induction of apoptotic signals, which then kill these more differentiated tumor cells.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is responsible for a disproportionate number of breast cancer patient deaths due to extensive molecular heterogeneity, high recurrence rates, and lack of targeted therapies. Dysregulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway occurs in approximately 50% of TNBC patients. Here, we performed a genome-wide CRISPR/Cas9 screen with PI3Kα and AKT inhibitors to find targetable synthetic lethalities in TNBC.

View Article and Find Full Text PDF

The development of mutant-selective KRAS inhibitors represents a major therapeutic advance; however, patients can develop resistance through feedback mechanisms and genetic alterations in the RAS pathway. Three publications in Nature and Cancer Discovery describe a promising RAS(ON) multi-selective inhibitor that simultaneously targets oncogenic RAS and multiple potential resistance mechanisms while sparing normal tissue.

View Article and Find Full Text PDF

Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach.

View Article and Find Full Text PDF

Despite the success of KRAS G12C inhibitors in non-small cell lung cancer (NSCLC), more effective treatments are needed. One preclinical strategy has been to cotarget RAS and mTOR pathways; however, toxicity due to broad mTOR inhibition has limited its utility. Therefore, we sought to develop a more refined means of targeting cap-dependent translation and identifying the most therapeutically important eukaryotic initiation factor 4F complex-translated (eIF4F-translated) targets.

View Article and Find Full Text PDF

While screening and early detection have reduced mortality from prostate cancer, castration-resistant disease (CRPC) is still incurable. Here, we report that combined EZH2/HDAC inhibitors potently kill CRPCs and cause dramatic tumor regression in aggressive human and mouse CRPC models. Notably, EZH2 and HDAC both transmit transcriptional repressive signals: regulating histone H3 methylation and histone deacetylation, respectively.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance.

View Article and Find Full Text PDF

Unlabelled: The DAB2IP tumor suppressor encodes a RAS GTPase-activating protein. Accordingly, DAB2IP has been shown to be mutated or suppressed in tumor types that typically lack RAS mutations. However, here we report that DAB2IP is mutated or selectively silenced in the vast majority of KRAS and BRAF mutant colorectal cancers.

View Article and Find Full Text PDF

Malignant tumors exhibit high degrees of genomic heterogeneity at the cellular level, leading to the view that subpopulations of tumor cells drive growth and treatment resistance. To examine the degree to which tumors also exhibit metabolic heterogeneity at the level of individual cells, we employed multi-isotope imaging mass spectrometry (MIMS) to quantify utilization of stable isotopes of glucose and glutamine along with a label for cell division. Mouse models of melanoma and malignant peripheral nerve sheath tumors (MPNSTs) exhibited striking heterogeneity of substrate utilization, evident in both proliferating and non-proliferating cells.

View Article and Find Full Text PDF

While KRAS mutations are common in non-small cell lung cancer (NSCLC), effective treatments are lacking. Here, we report that half of KRAS-mutant NSCLCs aberrantly express the homeobox protein HOXC10, largely due to unappreciated defects in PRC2, which confers sensitivity to combined BET/MEK inhibitors in xenograft and PDX models. Efficacy of the combination is dependent on suppression of HOXC10 by BET inhibitors.

View Article and Find Full Text PDF

We assessed the contribution of IL1 signaling molecules to malignant tumor growth using IL1β, IL1α, and IL1R1 mice. Tumors grew progressively in IL1R and IL1α mice but were often absent in IL1β mice. This was observed whether tumors were implanted intradermally or injected intravenously and was true across multiple distinct tumor lineages.

View Article and Find Full Text PDF

Purpose: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Combining Hsp90 inhibitors to enhance endoplasmic reticulum stress with mTOR inhibition results in dramatic MPNST shrinkage in a genetically engineered MPNST mouse model. Ganetespib is an injectable potent small molecule inhibitor of Hsp90.

View Article and Find Full Text PDF

Purpose: There are no known effective medical treatments for refractory MPNST. Inactivation of the NF1 tumor suppressor in MPNST results in upregulation of mTOR (mammalian target of rapamycin) signaling and angiogenesis, which contributes to disease progression. We conducted a phase II study for patients (pts) with refractory MPNST combining everolimus (10 mg PO once daily) with bevacizumab (10 mg/kg IV every 2 weeks) to determine the clinical benefit rate (CBR) (complete response, partial response (PR), or stable disease (SD) ≥ 4 months).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene.

View Article and Find Full Text PDF

Although the majority of -mutant melanomas respond to BRAF/MEK inhibitors, these agents are not typically curative. Moreover, they are largely ineffective in - and -mutant tumors. Here we report that genetic and chemical suppression of HDAC3 potently cooperates with MAPK pathway inhibitors in all three RAS pathway-driven tumors.

View Article and Find Full Text PDF

Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance.

View Article and Find Full Text PDF

Cancer cell survival is dependent on oxidative-stress defenses against reactive oxygen species (ROS) that accumulate during tumorigenesis. Here, we show a non-canonical oxidative-stress defense mechanism through TRPA1, a neuronal redox-sensing Ca-influx channel. In TRPA1-enriched breast and lung cancer spheroids, TRPA1 is critical for survival of inner cells that exhibit ROS accumulation.

View Article and Find Full Text PDF

Diverse pathways drive resistance to BRAF/MEK inhibitors in BRAF-mutant melanoma, suggesting that durable control of resistance will be a challenge. By combining statistical modeling of genomic data from matched pre-treatment and post-relapse patient tumors with functional interrogation of >20 in vitro and in vivo resistance models, we discovered that major pathways of resistance converge to activate the transcription factor, c-MYC (MYC). MYC expression and pathway gene signatures were suppressed following drug treatment, and then rebounded during progression.

View Article and Find Full Text PDF

Preclinical studies using genetically engineered mouse models (GEMM) have the potential to expedite the development of effective new therapies; however, they are not routinely integrated into drug development pipelines. GEMMs may be particularly valuable for investigating treatments for less common cancers, which frequently lack alternative faithful models. Here, we describe a multicenter cooperative group that has successfully leveraged the expertise and resources from philanthropic foundations, academia, and industry to advance therapeutic discovery and translation using GEMMs as a preclinical platform.

View Article and Find Full Text PDF

Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills -mutant tumors by triggering catastrophic oxidative stress.

View Article and Find Full Text PDF

Unlabelled: Luminal breast cancers are typically estrogen receptor-positive and generally have the best prognosis. However, a subset of luminal tumors, namely luminal B cancers, frequently metastasize and recur. Unfortunately, the causal events that drive their progression are unknown, and therefore it is difficult to identify individuals who are likely to relapse and should receive escalated treatment.

View Article and Find Full Text PDF

Unlabelled: As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non-small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically engineered mouse models of lung adenocarcinoma.

View Article and Find Full Text PDF