Background/objectives: According to the World Health Organization, the gold standard for diagnosing COVID-19 is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. However, to confirm the diagnosis in patients who have negative results but still show symptoms, imaging tests, especially computed tomography (CT), are used. In this study, using convolutional neural networks, we compared the following topics using manual and automatic lung segmentation methods: (1) the performance of an automatic segmentation of COVID-19 areas using two strategies for data partitioning, CT scans, and slice strategies; (2) the performance of an automatic segmentation method of COVID-19 when there was interobserver agreement between two groups of radiologists; and (3) the performance of the area affected by COVID-19.
View Article and Find Full Text PDFIn recent decades, many studies have been published on the use of automatic smear microscopy for diagnosing pulmonary tuberculosis (TB). Most of them deal with a preliminary step of the diagnosis, the bacilli detection, whereas sputum smear microscopy for diagnosis of pulmonary TB comprises detecting and reporting the number of bacilli found in at least 100 microscopic fields, according to the 5 grading scales (negative, scanty, 1+, 2+ and 3+) endorsed by the World Health Organization (WHO). Pulmonary TB diagnosis in bright-field smear microscopy, however, depends upon the attention of a trained and motivated technician, while the automated TB diagnosis requires little or no interpretation by a technician.
View Article and Find Full Text PDFDue to wearables' popularity, human activity recognition (HAR) plays a significant role in people's routines. Many deep learning (DL) approaches have studied HAR to classify human activities. Previous studies employ two HAR validation approaches: subject-dependent (SD) and subject-independent (SI).
View Article and Find Full Text PDFBMC Med Imaging
November 2019
Background: Outlining lesion contours in Ultra Sound (US) breast images is an important step in breast cancer diagnosis. Malignant lesions infiltrate the surrounding tissue, generating irregular contours, with spiculation and angulated margins, whereas benign lesions produce contours with a smooth outline and elliptical shape. In breast imaging, the majority of the existing publications in the literature focus on using Convolutional Neural Networks (CNNs) for segmentation and classification of lesions in mammographic images.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
This paper presents a new method for segmentation of tuberculosis bacillus in conventional sputum smear microscopy. The method comprises three main steps. In the first step, a scalar selection are made for characteristics from the following color spaces: RGB, HSI, YCbCr and Lab.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
This article presents a systematic analysis of focus functions in conventional sputum smear microscopy for tuberculosis. This is the first step in the development of automatic microscopy. Nine autofocus functions are analyzed in a set of 1200 images with varying degrees of content density.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
May 2009
This article presents an automatic identification method of mycobacterium tuberculosis with conventional microscopy images based on Red and Green color channels using global adaptive threshold segmentation. Differing from fluorescence microscopy, in the conventional microscopy the bacilli are not easily distinguished from the background. The key to the bacilli segmentation method employed in this work is the use of Red minus Green (R-G) images from RGB color format.
View Article and Find Full Text PDF