Publications by authors named "Cicak K"

Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform.

View Article and Find Full Text PDF

Quantum entanglement of mechanical systems emerges when distinct objects move with such a high degree of correlation that they can no longer be described separately. Although quantum mechanics presumably applies to objects of all sizes, directly observing entanglement becomes challenging as masses increase, requiring measurement and control with a vanishingly small error. Here, using pulsed electromechanics, we deterministically entangle two mechanical drumheads with masses of 70 picograms.

View Article and Find Full Text PDF

Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits.

View Article and Find Full Text PDF

The act of observing a quantum object fundamentally perturbs its state, resulting in a random walk toward an eigenstate of the measurement operator. Ideally, the measurement is responsible for all dephasing of the quantum state. In practice, imperfections in the measurement apparatus limit or corrupt the flow of information required for quantum feedback protocols, an effect quantified by the measurement efficiency.

View Article and Find Full Text PDF

We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize ultrastrong parametric coupling, where the coupling not only exceeds the dissipation in the system but also rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited by the fundamental parametric instability.

View Article and Find Full Text PDF

An electro-optomechanical device capable of microwave-to-optics conversion has recently been demonstrated, with the vision of enabling optical networks of superconducting qubits. Here we present an improved converter design that uses a three-dimensional microwave cavity for coupling between the microwave transmission line and an integrated LC resonator on the converter chip. The new design simplifies the optical assembly and decouples it from the microwave part of the setup.

View Article and Find Full Text PDF

We report on the design and implementation of a field-programmable Josephson amplifier (FPJA)-a compact and lossless superconducting circuit that can be programmed by a set of microwave drives to perform reciprocal and nonreciprocal frequency conversion and amplification. In this work, we demonstrate four modes of operation: frequency conversion (transmission of -0.5 dB, reflection of -30 dB), circulation (transmission of -0.

View Article and Find Full Text PDF

Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit.

View Article and Find Full Text PDF

We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable interactions between a phase qubit and a lumped-element resonator. The rf SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling strengths from zero to near the ultrastrong coupling regime. By modulating the magnetic susceptibility, nonresonant parametric coupling achieves rates >100  MHz.

View Article and Find Full Text PDF

Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition.

View Article and Find Full Text PDF

The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion.

View Article and Find Full Text PDF

Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence. Central to this effort is the necessity of long-lived mechanical states. Previous efforts have witnessed quantum behaviour, but for a low-quality-factor mechanical system.

View Article and Find Full Text PDF

We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. The coupling strength is mediated by a flux-biased rf SQUID operated in the nonhysteretic regime. By tuning the applied flux bias to the rf SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and resonator.

View Article and Find Full Text PDF

When a three-level quantum system is irradiated by an intense coupling field resonant with one of the three possible transitions, the absorption peak of an additional probe field involving the remaining level is split. This process is known in quantum optics as the Autler-Townes effect. We observe these phenomena in a superconducting Josephson phase qubit, which can be considered an "artificial atom" with a multilevel quantum structure.

View Article and Find Full Text PDF

We have probed the effects of transverse variations in pinning strength on charge-density-wave (CDW) structure in NbSe3 by x-ray micro-beam diffraction. In ribbonlike crystals having a large longitudinal step in thickness, the CDW first depins on the thick side of the step, causing rotations of the CDW wave vector. By measuring these rotations as a function of position and electric field, the corresponding shear strains are determined, allowing the CDW's shear modulus to be estimated.

View Article and Find Full Text PDF

Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects.

View Article and Find Full Text PDF

One of the many challenges of building a scalable quantum computer is single-shot measurement of all the quantum bits (qubits). We have used simultaneous single-shot measurement of coupled Josephson phase qubits to directly probe interaction of the qubits in the time domain. The concept of measurement crosstalk is introduced, and we show that its effects are minimized by careful adjustment of the timing of the measurements.

View Article and Find Full Text PDF

We have explored the shear plasticity of charge density waves (CDWs) in NbSe3 samples with cross sections having a single microfabricated thickness step. Shear stresses along the step result from thickness-dependent CDW pinning. For small thickness differences the CDW depins elastically at the volume average depinning field.

View Article and Find Full Text PDF