Proteolysis in skeletal muscle is mainly carried out by the activity of the ubiquitin-dependent proteolytic system. For the study of protein degradation through the ubiquitin-proteasome pathway, we used a model of hyperthermia in murine myotubes. In C2C12 cells, hyperthermia (41°C) induced a significant increase in both the rate of protein synthesis (18%) and degradation (51%).
View Article and Find Full Text PDFCancer patients commonly suffer from cachexia, a syndrome in which tumors induce metabolic changes in the host that lead to massive loss in skeletal muscle mass. Using a preclinical mouse model of cancer cachexia, we tested the hypothesis that tumor inoculation causes a reduction in ATP synthesis and genome-wide aberrant expression in skeletal muscle. Mice implanted with Lewis lung carcinomas were examined by in vivo 31P nuclear magnetic resonance (NMR).
View Article and Find Full Text PDFC2C12 cells exposed to hyperthermia (41 degrees C) experienced an increase in both protein synthesis and degradation. The addition of IL15 under hyperthermic conditions resulted in an important increase in protein synthesis with no changes in protein degradation, except when cells overexpressed PPARdelta. The PPARdelta agonist GW501516 exerted similar effects on protein synthesis to IL15.
View Article and Find Full Text PDFPrevious studies have demonstrated an effect of corticotropin-releasing factor 2 receptor (CRF2R) agonists in the maintenance of skeletal muscle mass. The aim of this study was to evaluate the effects of a CRF2R agonist in preserving skeletal muscle in a mouse cachexia model. Implantation of a fast-growing tumor to mice (Lewis lung carcinoma) resulted in a clear cachectic state characterized by a profound muscle wasting.
View Article and Find Full Text PDFImplantation of the Yoshida AH-130 ascites hepatoma to rats resulted in a decrease in muscle weight 7 days after the inoculation of the tumor. These changes were associated with increases in the mRNA content for both peroxisome proliferator-activated receptor (PPAR) gamma and PPAR delta in skeletal muscle. The increase in gene expression for these transcription factors was related to increases in the expression of several genes involved in fatty acid transport, activation, and oxidation.
View Article and Find Full Text PDF