Publications by authors named "Cibele N Peroni"

GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain.

View Article and Find Full Text PDF

Growth hormone (GH) deficiency is characterized by impaired growth and development, and is currently treated by repeated administration of recombinant human GH (hGH). Encapsulated cell therapy (ECT) may offer a less demanding treatment-strategy for long-term production and release of GH into circulation. We used PiggyBac-based (PB) transposon delivery for engineering retinal pigment epithelial cells (ARPE-19), and tested a series of viral and non-viral promoters as well as codon-optimization to enhance transgene expression.

View Article and Find Full Text PDF

In a previous work, the common gonadotrophic hormone α-subunit (ag-GTHα), the ag-FSH β- and ag-LH β-subunit cDNAs, were isolated and characterized by our research group from pituitaries, while a preliminary synthesis of ag-FSH was also carried out in human embryonic kidney 293 (HEK293) cells. In the present work, the cDNA sequence encoding the ag-growth hormone (ag-GH) has also been isolated from the same giant Arapaimidae Amazonian fish. The ag-GH consists of 208 amino acids with a putative 23 amino acid signal peptide and a 185 amino acid mature peptide.

View Article and Find Full Text PDF

The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH).

View Article and Find Full Text PDF

The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects.

View Article and Find Full Text PDF

Human thyrotropin (hTSH) is a glycoprotein with three potential glycosylation sites: two in the α-subunit and one in the β-subunit. These sites are not always occupied and occupancy is frequently neglected in glycoprotein characterization, even though it is related to folding, trafficking, initiation of inflammation and host defense, as well as congenital disorders of glycosylation (CDG). For the first time -glycoprofiling analysis was applied to the site-occupancy determination of two native pituitary hTSH, in comparison with three recombinant preparations of hTSH, a widely used biopharmaceutical.

View Article and Find Full Text PDF

Non-viral transfer of the growth hormone gene to different muscles of immunodeficient dwarf (lit/scid) mice is under study with the objective of improving phenotypic correction via this particular gene therapy approach. Plasmid DNA was administered into the exposed quadriceps or non-exposed tibialis cranialis muscle of lit/scid mice followed by electroporation, monitoring several growth parameters. In a 6-month bioassay, 50μg DNA were injected three times into the quadriceps muscle of 80-day old mice.

View Article and Find Full Text PDF

Under physical activity a wide variety of cellular metabolic products and hormones are altered in the blood stream, including lactate, a metabolite of pyruvate reduction, and growth hormone (GH). Although a positive correlation between lactate and GH seems to exist during exercise, the role of lactate as a mediator of GH production has never been investigated. Thus, the aim of this study was to investigate whether lactate could activate the somatotropic axis and stimulate GH synthesis/release, contributing to the enhanced somatotropic activity described in exercise conditions.

View Article and Find Full Text PDF

The possibilities for non-viral GH gene therapy are studied in immunocompetent dwarf mice (lit/lit). As expression vector we used a plasmid previously employed in immunodeficient dwarf mice (pUBI-hGH-gDNA) by replacing the human GH gene with the genomic sequence of mouse-GH DNA (pUBI-mGH-gDNA). HEK-293 human cells transfected with pUBI-mGH-gDNA produced 3.

View Article and Find Full Text PDF

In previous work, sustained levels of circulating human growth hormone (hGH) and a highly significant weight increase were observed after electrotransfer of naked plasmid DNA (hGH-DNA) into the muscle of immunodeficient dwarf mice (lit/scid). In the present study, the efficacy of this in vivo gene therapy strategy is compared to daily injections (5 μg/twice a day) of recombinant hGH (r-hGH) protein, as assessed on the basis of several growth parameters. The slopes of the two growth curves were found to be similar (P > 0.

View Article and Find Full Text PDF

Objective: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors.

Materials And Methods: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice.

Results: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.

View Article and Find Full Text PDF

Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies.

View Article and Find Full Text PDF

Background: A model for in vivo gene therapy based on electroporation of human growth hormone (hGH)-coding naked DNA in the muscle of dwarf (lit/lit) and immunodeficient dwarf (lit/scid) mice is described.

Methods: A plasmid containing the ubiquitin C promoter and the genomic hGH sequence was administered to the exposed quadriceps muscle, followed by electrotransfer using eight 50-V pulses of 20 ms at a 0.5-s interval.

View Article and Find Full Text PDF

A CHO cell line, previously genetically modified by the introduction of rat alpha2,6-sialyltransferase cDNA, generated for the first time a human-like sialylated recombinant hTSH (hlsr-hTSH) more similar to the native hormone, with 61% of alpha2,3- and 39% of alpha2,6-linked sialic acid residues. The best clone, when submitted to gene amplification with up to 8 microM methotrexate, presented a secretion level of approximately 2 microg hTSH/10(6)cells/day, useful for product purification and characterization. The relative molecular masses (M(r)) of the heterodimer and of the alpha- and beta-subunits of purified hlsr-hTSH, determined by MALDI-TOF mass spectrometry, and the relative hydrophobicities, determined by RP-HPLC, were not remarkably different from those presented by two r-hTSH preparations secreted by normal CHO cells.

View Article and Find Full Text PDF

Background: Keratinocytes are a very attractive vehicle for ex vivo gene transfer and systemic delivery because proteins secreted by these cells may reach the circulation via a mechanism that mimics the natural process.

Methods: An efficient retroviral vector (LXSN) encoding the mouse growth hormone gene (mGH) was used to transduce primary human keratinocytes. Organotypic raft cultures were prepared with these genetically modified keratinocytes and were grafted onto immunodeficient dwarf mice (lit/scid).

View Article and Find Full Text PDF

A gene therapy clinical trial for treatment of growth hormone (GH) deficiency has not been reached yet, but several strategies using different gene transfer methodologies and animal models have been developed and showed successful results. We have set up an ex vivo gene therapy protocol using primary human keratinocytes transduced with an efficient retroviral vector (LXSN) encoding the human (hGH) or mouse GH (mGH) genes. These stably modified cells presented high in vitro expression levels of hGH (7 microg/106 cells/d) and mGH (11 microg/106 cells/d) after selection with geneticin.

View Article and Find Full Text PDF

Treatment of growth hormone (GH) deficiency via parenteral administration of recombinant hGH has greatly benefited from recombinant DNA technology allowing production of practically unlimited amounts of the pure hormone. However, an alternative approach that may lead to correction of the clinical defect is presented by hGH gene transfer into somatic cells of the patient, either ex vivo or in vivo. This approach has not only the potential advantage of circumventing repetitive injections of the hormone and its laborious isolation and purification processes, but can also, in principle, provide a mechanism of hormone delivery that resembles the natural process.

View Article and Find Full Text PDF

Primary human keratinocytes, stably transduced with the human growth hormone (hGH) gene (under control of the retroviral LTR promoter) and selected via geneticin secreted as much as 7 microg hGH/106 cells/day. Their grafting onto immunodeficient dwarf mice (lit/scid) led to hGH levels in the circulation that did not go below 0.2-0.

View Article and Find Full Text PDF

A reversed-phase high-performance liquid chromatography (RP-HPLC) methodology for the qualitative and quantitative analysis of human thyrotropin (hTSH) in CHO cell conditioned medium and in purified preparations has been set up and validated for accuracy, precision and sensitivity. A recovery test indicated a bias of less than 2% and intra-day and inter-day quantitative determinations presented relative standard deviations (RSD) always <7%, while sensitivity was 0.2 microg (RSD=5.

View Article and Find Full Text PDF

The utilization of dicistronic mRNA expression vectors, containing the gene of interest upstream of an amplifiable marker gene, has shown success in rapidly, efficiently and reproducibly obtaining stable cell lines that express high levels of the protein of interest. For this reason, human thyroid-stimulating hormone (hTSH), a heterodimeric glycoprotein composed of non-covalently linked alpha- and beta-subunits, was expressed in Chinese hamster ovary (CHO) cells using a system based on dicistronic expression vectors. These contained the genes of interest and the amplifiable gene markers dihydrofolate reductase (DHFR) and adenosine deaminase (ADA), separated by an internal ribosome entry site isolated from the encephalomyocarditis virus.

View Article and Find Full Text PDF