Publications by authors named "Ciara K O Sullivan"

Trichomoniasis is the most prevalent curable, non-viral sexually transmitted infection (STI), with an estimated 156 million new infections in 2020. It can potentially result in adverse birth outcomes as well as infertility in men, whilst it also increases the risk of acquiring HIV and contracting other vaginal infections. It is mostly prevalent among women in low-income countries and especially in Africa and the Americas.

View Article and Find Full Text PDF

Background: COVID-19 pneumonia causes hyperinflammatory response that culminates in acute respiratory syndrome (ARDS) related to increased multiorgan dysfunction and mortality risk. Antiviral-neutralizing immunoglobulins production reflect the host humoral status and illness severity, and thus, immunoglobulin (Ig) circulating levels could be evidence of COVID-19 prognosis.

Methods: The relationship among circulating immunoglobulins (IgA, IgG, IgM) and COVID-19 pneumonia was evaluated using clinical information and blood samples in a COVID-19 cohort composed by 320 individuals recruited during the acute phase and followed up to 4 to 8 weeks (n = 252) from the Spanish first to fourth waves.

View Article and Find Full Text PDF
Article Synopsis
  • The detection of single nucleotide polymorphisms (SNPs) is crucial for clinical diagnostics, pharmacogenomics, and forensics, particularly for identifying genetic risks like those associated with osteoporosis.
  • A semiautomated system using solid-phase electrochemical melting curve analysis (éMCA) was developed to identify alleles at specific SNP sites related to bone fracture risks by employing asymmetric isothermal recombinase polymerase amplification.
  • The proof-of-concept utilized a microfluidic device with a multielectrode array, allowing for the effective detection of SNP hetero/homozygosity, particularly at the osteoporosis-related SNP site rs2741856 in real patient samples.
View Article and Find Full Text PDF

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates.

View Article and Find Full Text PDF

The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer.

View Article and Find Full Text PDF

Cholera and milder diarrheal disease are caused by Vibrio cholerae and enterotoxigenic Escherichia coli and are still a prominent public health concern. Evaluation of suspicious isolates is essential for the rapid containment of acute diarrhea outbreaks or prevention of epidemic cholera. Existing detection techniques require expensive equipment, trained personnel and are time-consuming.

View Article and Find Full Text PDF

The overall objective of this work is the evaluation of different competitive aptamer assays based on inductively coupled plasma mass spectrometry (ICP-MS) detection for the determination of β-conglutin (food protein allergen from lupin) in flour samples. To this end, two competitive aptamer assay schemes were developed using either thiolated aptamers chemisorbed onto gold nanoparticles (AuNPs) or biotinylated aptamers linked to streptavidin-AuNPs. The influence of ICP-MS detection mode (i.

View Article and Find Full Text PDF

Retinol-binding protein 4 (RBP4) has been implicated in insulin resistance in rodents and humans with obesity and T2DM, making it a potential biomarker for the early diagnosis of T2DM. However, diagnostic tools for low-level detection of RBP4 are still lagging behind. Therefore, there is an urgent need for the development of T2DM diagnostics that are rapid, cost-effective and that can be used at the point-of-care (POC).

View Article and Find Full Text PDF

Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept.

View Article and Find Full Text PDF

The illicit use of anabolic androgenic steroids (AAS) as performance-enhancing drugs remains a global issue threatening not only the credibility of competitive sports but also public health due to the well-documented adverse effects they elicit. AAS abuse is not restricted only to professional sports, but also extends to recreational athletes and adolescents as well as in livestock production as growth-promoting agents. Testosterone and nandrolone are among the AAS most frequently exploited.

View Article and Find Full Text PDF

Detection and identification of single nucleotide polymorphisms (SNPs) have garnered increasing interest in the past decade, finding potential application in detection of antibiotic resistance, advanced forensic science, as well as clinical diagnostics and prognostics, moving toward the realization of personalized medicine. Many different techniques have been developed for genotyping SNPs, and ideally these techniques should be rapid, easy-to-use, cost-effective, flexible, scalable, easily automated, and requiring minimal end-user intervention. While high-resolution melting curve analysis has been widely used for the detection of SNPs, fluorescence detection does not meet many of the desired requirements, and electrochemical detection is an attractive alternative due to its high sensitivity, simplicity, cost-effectiveness, and compatibility with microfabrication.

View Article and Find Full Text PDF

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged at the end of 2019, resulting in the ongoing COVID-19 pandemic. The high transmissibility of the virus and the substantial number of asymptomatic individuals have led to an exponential rise in infections worldwide, urgently requiring global containment strategies. Reverse transcription-polymerase chain reaction is the gold standard for the detection of SARS-CoV-2 infections.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the immune response and viral dynamics in hospitalized COVID-19 patients, focusing on SARS-CoV-2 RNA, antibodies, and cytokines during acute infection and six months after diagnosis.
  • Of the 24 patients, predominantly male with a median age of 61, clinical factors linked to severe COVID-19 included delayed viral load decline and higher levels of key immune markers such as IgA, IgM, IgG, and specific cytokines at the time of diagnosis.
  • The findings suggest that elevated concentrations of certain antibodies and cytokines can predict severe outcomes in COVID-19, while baseline SARS-CoV-2 levels did not correlate with disease severity.
View Article and Find Full Text PDF

Here, we report the electrochemical detection of single-point mutations using solid-phase isothermal primer elongation with redox-labeled oligonucleotides. A single-base mutation associated with resistance to rifampicin, an antibiotic commonly used for the treatment of , was used as a model system to demonstrate a proof-of-concept of the approach. Four 5'-thiolated primers, designed to be complementary with the same fragment of the target sequence and differing only in the last base, addressing the polymorphic site, were self-assembled via chemisorption on individual gold electrodes of an array.

View Article and Find Full Text PDF

Isothermal recombinase polymerase amplification-based solid-phase primer extension is used for the optical detection of a hypertrophic cardiomyopathy associated single nucleotide polymorphism (SNP) in a fingerprick blood sample. The assay exploits four thiolated primers which have the same sequences with the exception of the 3'-terminal base. Target DNA containing the SNP site hybridizes to all four of the immobilized probes, with primer extension only taking place from the primer containing the terminal base that is complementary to the SNP under interrogation.

View Article and Find Full Text PDF

The marine toxin tetrodotoxin (TTX) poses a great risk to public health safety due to its severe paralytic effects after ingestion. Seafood poisoning caused by the consumption of contaminated marine species like pufferfish due to its expansion to nonendemic areas has increased the need for fast and reliable detection of the toxin to effectively implement prevention strategies. Liquid chromatography-mass spectrometry is considered the most accurate method, although competitive immunoassays have also been reported.

View Article and Find Full Text PDF

Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera.

View Article and Find Full Text PDF

We report a series of 2'-deoxyribonucleoside triphosphates bearing dicarba--undecaborate ([CBH]), [3,3'-iron-bis(1,2-dicarbollide)] (FESAN, [Fe(CBH)]) or [3,3'-cobalt-bis(1,2-dicarbollide)] (COSAN, [Co(CBH)]) groups prepared either through the Sonogashira cross-coupling or the CuAAC click reaction. The modified s were substrates for KOD XL DNA polymerase in enzymatic synthesis of modified DNA through primer extension (PEX). The -carborane- and FESAN-modified nucleotides gave analytically useful oxidation signals in square-wave voltammetry and were used for redox labeling of DNA.

View Article and Find Full Text PDF

Mycotoxins are toxic compounds produced by fungi, which represent a risk to the food and feed supply chain, having an impact on health and economies. A high percentage of feed samples have been reported to be contaminated with more than one type of mycotoxin. Systematic, cost-effective and simple tools for testing are critical to achieve a rapid and accurate screening of food and feed quality.

View Article and Find Full Text PDF

A 153-mer target DNA was amplified using ethynyl ferrocene dATP and a tailed forward primer resulting in a duplex with a single-stranded DNA tail for hybridization to a surface-tethered probe. A thiolated probe containing the sequence complementary to the tail as well as a 15 polythimine vertical spacer with a (CH) spacer was immobilized on the surface of a gold electrode and hybridized to the ferrocene-modified complementary strand. Potential step chronoamperometry and cyclic voltammetry were used to probe the potential of zero charge, PZC, and the rate of heterogeneous electron transfer between the electrode and the immobilized ferrocene moieties.

View Article and Find Full Text PDF

A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 ± 0.

View Article and Find Full Text PDF

In previous work, a 93-mer aptamer was selected against the anaphylactic allergen, β-conglutin and truncated to an 11-mer, improving the affinity by two orders of magnitude, whilst maintaining the specificity. This 11-mer was observed to fold in a G-quadruplex, and preliminary results indicated the existence of a combination of monomeric and higher-order structures. Building on this previous work, in the current study, we aimed to elucidate a deeper understanding of the structural forms of this 11-mer and the effect of the structure on its binding ability.

View Article and Find Full Text PDF

Recombinase polymerase amplification (RPA) is a technique that is used to specifically amplify a target nucleic acid sequence. Unlike the polymerase chain reaction (PCR), RPA is performed at a constant temperature between 37 and 42°C. Therefore, it can be potentially used for the onsite detection of various pathogens when combined with DNA extraction and amplicon detection techniques.

View Article and Find Full Text PDF