Our understanding of complex microbial communities, such as those residing in the rumen, has drastically advanced through the use of high throughput sequencing (HTS) technologies. Indeed, with the use of barcoded amplicon sequencing, it is now cost effective and computationally feasible to identify individual rumen microbial genera associated with ruminant livestock nutrition, genetics, performance and greenhouse gas production. However, across all disciplines of microbial ecology, there is currently little reporting of the use of internal controls for validating HTS results.
View Article and Find Full Text PDFBackground: Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods.
View Article and Find Full Text PDFMethane is an undesirable end product of rumen fermentative activity because of associated environmental impacts and reduced host feed efficiency. Our study characterized the rumen microbial methanogenic community in beef cattle divergently selected for phenotypic residual feed intake (RFI) while offered a high-forage (HF) diet followed by a low-forage (LF) diet. Rumen fluid was collected from 14 high-RFI (HRFI) and 14 low-RFI (LRFI) animals at the end of both dietary periods.
View Article and Find Full Text PDFFeed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets.
View Article and Find Full Text PDF