Publications by authors named "Ciana Deveau"

Recurrent neural networks can generate dynamics, but in sensory cortex it has been unclear if any dynamic processing is supported by the dense recurrent excitatory-excitatory network. Here we show a new role for recurrent connections in mouse visual cortex: they support powerful dynamical computations, but by filtering sequences of input instead of generating sequences. Using two-photon optogenetics, we measure neural responses to natural images and play them back, finding inputs are amplified when played back during the correct movie dynamic context- when the preceding sequence corresponds to natural vision.

View Article and Find Full Text PDF

Cerebral cortex supports representations of the world in patterns of neural activity, used by the brain to make decisions and guide behavior. Past work has found diverse, or limited, changes in the primary sensory cortex in response to learning, suggesting that the key computations might occur in downstream regions. Alternatively, sensory cortical changes may be central to learning.

View Article and Find Full Text PDF

The () apical polarity genes are essential for the development and functions of epithelia. Adult zebrafish retinal neuroepithelium expresses three genes (, , and ); however, it is unknown whether and how Crb1 differs from other Crb proteins in expression, localization, and functions. Here, we show that, unlike zebrafish Crb2a and Crb2b as well as mammalian Crb1 and Crb2, zebrafish Crb1 does not localize to the subapical regions of photoreceptors and Müller glial cells; rather, it localizes to a small region of cone outer segments: the cell membranes surrounding the axonemes.

View Article and Find Full Text PDF

We investigate mutations in trβ2, a splice variant of thrb, identifying changes in function, structure, and behavior in larval and adult zebrafish retinas. Two N-terminus CRISPR mutants were identified. The first is a 6BP+1 insertion deletion frameshift resulting in a truncated protein.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) is the most common and most lethal primary malignant brain tumor. The receptor tyrosine kinase MET is frequently upregulated or overactivated in GBM. Although clinically applicable MET inhibitors have been developed, resistance to single modality anti-MET drugs frequently occurs, rendering these agents ineffective.

View Article and Find Full Text PDF

The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. is one of the most commonly deregulated genes in cancer. The p53-ARF-MDM2 pathway is deregulated in 84% of glioblastoma (GBM) patients and 94% of GBM cell lines.

View Article and Find Full Text PDF