Publications by authors named "Cian O'Connor"

The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications.

View Article and Find Full Text PDF

Background: Patient and public involvement in research (PPI) has many benefits including increasing relevance and impact. While using PPI in clinical research is now an established practice, the involvement of patients and the public in pre-clinical research, which takes place in a laboratory setting, has been less frequently described and presents specific challenges. This study aimed to explore the perspectives of seriously injured rugby players' who live with a spinal cord injury on PPI in pre-clinical research.

View Article and Find Full Text PDF

A particular challenge to the field of neuroscience involves translating findings from 2D in vitro systems to 3D in vivo environments. Standardized cell culture environments that adequately reflect the properties of the central nervous system (CNS) such as the stiffness, protein composition, and microarchitecture in which to study 3D cell-cell and cell-matrix interactions are generally lacking for in vitro culture systems. In particular, there remains an unmet need for reproducible, low-cost, high-throughput, and physiologically relevant environments comprised of tissue-native matrix proteins for the study of CNS microenvironments in 3D.

View Article and Find Full Text PDF

Background: Patient and Public Involvement (PPI) in research aims to improve the quality, relevance and appropriateness of research. PPI has an established role in clinical research where there is evidence of benefit, and where policymakers and funders place continued emphasis on its inclusion. However, for preclinical research, PPI has not yet achieved the same level of integration.

View Article and Find Full Text PDF

After spinal cord injury (SCI), tissue engineering scaffolds offer a potential bridge for regeneration across the lesion and support repair through proregenerative signaling. Ideal biomaterial scaffolds that mimic the physicochemical properties of native tissue have the potential to provide innate trophic signaling while also minimizing damaging inflammation. To address this challenge, taking cues from the spinal cord's structure, the proregenerative signaling capabilities of native cord components are compared in vitro.

View Article and Find Full Text PDF

Environmental temperature has important effects on the physiology and life history of ectothermic animals, including investment in the immune system and the infectious capacity of pathogens. Numerous studies have examined individual components of these complex systems, but little is known about how they integrate when animals are exposed to different temperatures. Here, we use the Indian meal moth () to understand how immune investment and disease resistance react and potentially trade-off with other life-history traits.

View Article and Find Full Text PDF