After total knee replacement, the monitoring of the prosthetic performance is often done by roentgenographic examination. However, the two-dimensional (2D) roentgen images only provide information about the projection onto the anteroposterior (AP) and mediolateral (ML) planes. Historically, the model-based roentgen stereophotogrammetric analysis (RSA) technique has been developed to predict the spatial relationship between prostheses by iteratively comparing the projective data for the prosthetic models and the roentgen images.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
April 2013
Recently, the model-based roentgen stereophotogrammetric analysis (RSA) method has been developed as an in vivo tool to estimate static pose and dynamic motion of the instrumented prostheses. The two essential inputs for the RSA method are prosthetic models and roentgen images. During RSA calculation, the implants are often reversely scanned and input in the form of meshes to estimate the outline error between prosthetic projection and roentgen images.
View Article and Find Full Text PDFConventional radiography is insensitive for early and accurate estimation of the mal-alignment and wear of knee prostheses. The two-staged (rough and fine) registration of the model-based RSA technique has recently been developed to in vivo estimate the prosthetic pose (i.e, location and orientation).
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
July 2011
The purpose of this study is to develop a method to analyse the pose of the knee nearthrosis mounted and to automate the registration procedure for easy use in clinical applications. The proposed registration method is essentially a model-based method, in which the CAD model is acquired by reverse engineering. The CAD model is converted into a two-dimensional (2D) image by a rendering technique, and the compatibility of the X-ray image and the image of the CAD model is investigated.
View Article and Find Full Text PDF