Publications by authors named "Ci Dong"

Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.

View Article and Find Full Text PDF

Objectives: To investigate the relationship between physical activity and depressive symptoms in stroke survivors.

Design: A cross-sectional study utilizing National Health and Nutrition Examination Survey (NHANES) 2007-2018 data, employing propensity score matching to control for confounders.

Patients: 1,140 stroke survivors from NHANES, assessing depressive symptoms through the Patient Health Questionnaire-9 (PHQ-9) conducted via family interview or a mobile examination centre examination.

View Article and Find Full Text PDF

In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.

View Article and Find Full Text PDF

Aims: To analyse the current status of psychological resilience in Parkinson's disease (PD) patients and its correlation with social support and coping style.

Design: A cross-sectional study.

Methods: PD patients hospitalized in a tertiary-level hospital in Shijiazhuang, Hebei Province, from March 2022 to March 2023 were selected for the study using the convenience sampling method.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear.

View Article and Find Full Text PDF

Nitrogen (N) availability is a major limiting factor for plant growth and agricultural productivity. Although the gene regulation network in response to N starvation has been extensively studied, it remains unknown whether N starvation has an impact on the activity of transposable elements (TEs). Here, we report that TEs can be transcriptionally activated in Arabidopsis under N starvation conditions.

View Article and Find Full Text PDF

High temperature is one of the major environmental stresses affecting plant growth and fitness. Heat stress transcription factors (HSFs) play critical roles in regulating the expression of heat-responsive genes. However, how HSFs are regulated remains obscure.

View Article and Find Full Text PDF

Leaf osmotic adjustment by the active accrual of compatible organic solutes (e.g. sucrose) contributes to drought tolerance throughout the plant kingdom.

View Article and Find Full Text PDF

Base excision repair and active DNA demethylation produce repair intermediates with DNA molecules blocked at the 3'-OH end by an aldehyde or phosphate group. However, both the physiological consequences of these accumulated single-strand DNAs break with 3'-blocked ends (DNA 3'-blocks) and the signaling pathways responding to unrepaired DNA 3'-blocks remain unclear in plants. Here, we investigated the effects of DNA 3'-blocks on plant development using the zinc finger DNA 3'-phosphoesterase (zdp) AP endonuclease2 (ape2) double mutant, in which 3'-blocking residues are poorly repaired.

View Article and Find Full Text PDF

DNA methylation and long non-coding RNAs (lncRNAs) regulate plant growth and development, but their relationship and effect on responses to the auxin phytohormone indole-3-acetic acid (IAA) remain largely unknown, particularly in woody plants such as poplar (Populus tomentosa). Following treatment of 1-year-old clonal plants with 100 µM IAA, key poplar lncRNA genes showed changes in methylation, but whole-genome methylation levels showed no significant change. Moreover, 100 µM IAA inhibited growth of the 1-year-old poplar clones, possibly through the suppression of photosynthesis.

View Article and Find Full Text PDF

The CRISPR technology continues to diversify with a broadening array of applications that touch all kingdoms of life. The simplicity, versatility and species-independent nature of the CRISPR system offers researchers a previously unattainable level of precision and control over genomic modifications. Successful applications in forest, fruit and nut trees have demonstrated the efficacy of CRISPR technology at generating null mutations in the first generation.

View Article and Find Full Text PDF

Complex RNA transcription and processing produces a diverse range catalog of long noncoding RNAs (lncRNAs), important biological regulators that have been implicated in osmotic stress responses in plants. Promoter upstream transcript (PROMPT) lncRNAs share some regulatory elements with the promoters of their neighbouring protein-coding genes. However, their function remains unknown.

View Article and Find Full Text PDF

Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa.

View Article and Find Full Text PDF

Rational: To investigate the clinical and MRI characteristics of spinal cord nerve Behçet's disease.

Patient Concerns: One patient with spinal cord nerve Behçet's disease was admitted to our hospital at October 20, 2015.

Diagnose: Spinal cord nerve Behçet's disease.

View Article and Find Full Text PDF

Objective: Human umbilical cord mesenchymal stem cells (hUC-MSCs) hold substantial promise for the treatment of ischemic neurological disease, but few clinical data are currently available about its therapeutic effects in hypoxic ischemic encephalopathy (HIE). This study is to evaluate the effects of hUC-MSCs transplantation on patients with HIE. Methods A total 22 patients with HIEwere randomly divided into hUC-MSCs transplantation group (n = 12) and control group (n = 10).

View Article and Find Full Text PDF

In trees, xylem tissues play a key role in the formation of woody tissues, which have important uses for pulp and timber production; also DNA methylation plays an important part in gene regulation during xylogenesis in trees. In our study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to analyze the role cytosine methylation plays in wood formation in the commercially important tree species Populus tomentosa. This analysis compared the methylation patterns between xylem tissues (developing xylem and mature xylem) and non-xylem tissues (cambium, shoot apex, young leaf, mature leaf, phloem, root, male catkin, and female catkin) and found 10,316 polymorphic methylation sites.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a type of degenerative disorder of the basal ganglia, causing tremor at rest, muscle rigidity hypokinesia, and dementia. The effectiveness of drug treatments gradually diminishes because the conversion to dopamine within the brain is increasingly disrupted by the progressive degeneration of the dopaminergic terminals. After long-term treatment, most patients with PD suffer from disability that cannot be satisfactorily controlled.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) participate in a wide range of biological processes, but lncRNAs in plants remain largely unknown; in particular, we lack a systematic identification of plant lncRNAs involved in hormone responses. Moreover, allelic variation in lncRNAs remains poorly characterized at a large scale. Here, we conducted high-throughput RNA-sequencing of leaves from control and gibberellin (GA)-treated Populus tomentosa and identified 7655 reliably expressed lncRNAs.

View Article and Find Full Text PDF

DNA methylation plays important roles in responses to environmental stimuli. However, in perennial plants, the roles of DNA methylation in stress-specific adaptions to different abiotic stresses remain unclear. Here, we present a systematic, comparative analysis of the methylome and gene expression in poplar under cold, osmotic, heat, and salt stress conditions from 3h to 24h.

View Article and Find Full Text PDF

DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes.

View Article and Find Full Text PDF

DNA methylation, one of the best-studied types of chromatin modification, suppresses the expression of transposable elements, pseudogenes, repetitive sequences, and individual genes. However, the extent and variation of genome-wide DNA methylation in natural populations of plants remain relatively unknown. To investigate variation in DNA methylation and whether this variation associates with important plant traits, including leaf shape and photosynthesis, 20 413 DNA methylation sites were examined in a poplar association population (505 individuals) using methylation-sensitive amplification polymorphism (MSAP) technology.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are valuable self-renewing cells that can maintain the capacity to differentiate into specific brain cell types. NSCs may repair and even replace the brain tissue, and ultimatley promoting the central nervous system regeneration. Therefore, it is important, for scientists and pjysicians, to study the method for efficient culture and differentiation of NSCs.

View Article and Find Full Text PDF

Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified.

View Article and Find Full Text PDF

In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear.

View Article and Find Full Text PDF

Background: High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants.

Results: We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress.

View Article and Find Full Text PDF