Publications by authors named "Chyong-Ere Hsieh"

Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space.

View Article and Find Full Text PDF

We used tomographic reconstructions of frozen-hydrated triad junctions to determine the structure of the macromolecular complex associated with calcium release from the sarcoplasmic reticulum (SR), during excitation-contraction coupling. Using a rapid motif search algorithm with a reference motif of the ryanodine receptor (RyR) provided by single-particle cryo-electron microscopy, 49 receptors were located in five tomograms. Following co-alignment of the receptors and division into quadrants centered on the 4-fold symmetry axis, the receptors were classified using multivariate statistics.

View Article and Find Full Text PDF

Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present.

View Article and Find Full Text PDF

Cryoelectron microscopy of frozen-hydrated specimens is currently the only available technique for determining the "native" three-dimensional ultrastructure of individual examples of organelles and cells. Two techniques are available, stereo pair imaging and electron tomography, the latter providing full three-dimensional information about the specimen. A resolution of 4 to 10 nm can currently be obtained with cryotomography.

View Article and Find Full Text PDF

Cells infected with herpes simplex virus type 1 (HSV-1) were conventionally embedded or freeze substituted after high-pressure freezing and stained with uranyl acetate. Electron tomograms of capsids attached to or undergoing envelopment at the inner nuclear membrane (INM), capsids within cytoplasmic vesicles near the nuclear membrane, and extracellular virions revealed the following phenomena. (i) Nucleocapsids undergoing envelopment at the INM, or B capsids abutting the INM, were connected to thickened patches of the INM by fibers 8 to 19 nm in length and < or =5 nm in width.

View Article and Find Full Text PDF

Cryo-electron tomography of frozen-hydrated specimens holds considerable promise for high-resolution three-dimensional imaging of organelles and macromolecular complexes in their native cellular environment. While the technique has been successfully used with small, plunge-frozen cells and organelles, application to bulk mammalian tissue has proven to be difficult. We report progress with cryo-electron tomography of frozen-hydrated sections of rat liver prepared by high-pressure freezing and cryo-ultramicrotomy.

View Article and Find Full Text PDF

Over the past 5 years, thanks to advances in both instrumentation and computational speed, three-dimensional imaging techniques using the electron microscope have been greatly improved in two areas: electron tomography of cell organelles or cell sections and reconstruction of macromolecules from single particles. Ice embedment has brought a breakthrough in the degree of preservation of specimens under close-to-native conditions. The current challenge is to push the resolution of electron tomographic imaging to a point where macromolecular signatures can be recognized within the cellular context.

View Article and Find Full Text PDF

Electron tomography of frozen-hydrated tissue sections enables analysis of the 3-D structure of cell organelles in situ and in a near-native state. In this study, 160-200-nm-thick sections were cut from high-pressure frozen rat liver, and improved methods were used for handling and mounting the sections. Automated data collection facilitated tilt-series recording at low electron dose (approximately 4000 e(-)/nm(2) at 400 keV).

View Article and Find Full Text PDF

Using a 400-kV cryoelectron microscope, we have obtained tomographic reconstructions of frozen-hydrated sea urchin axonemes with 8-10-nm resolution, as assessed by detection of characteristic components including doublet microtubules, radial spokes, central sheath projections, and outer dynein arms. We did not detect the inner dynein arms or the microtubule lattice. The 1/(8 nm) and 1/(16 nm) layer lines are consistently present in power spectra of both projection images and tomographic reconstructions.

View Article and Find Full Text PDF