Host biomarkers are increasingly being considered as tools for improved COVID-19 detection and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) during SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with 99.9% accuracy.
View Article and Find Full Text PDFThe host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors.
View Article and Find Full Text PDFInflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1) by low-dose camptothecin (CPT) can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through cyclic GMP-AMP synthase (cGAS) detection of cytoplasmic DNA.
View Article and Find Full Text PDFHendra virus (HeV) is an emerging zoonotic pathogen harbored by Australian mainland flying foxes. HeV infection can cause lethal disease in humans and horses, and to date all cases of human HeV disease have resulted from contact with infected horses. Currently, diagnosis of acute HeV infections in horses relies on the productive phase of infection when virus shedding may occur.
View Article and Find Full Text PDFHendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are zoonotic RNA viruses that cause lethal disease in humans and are designated as Biosafety Level 4 (BSL4) agents. Moreover, henipaviruses belong to the same group of viruses that cause disease more commonly in humans such as measles, mumps and respiratory syncytial virus. Due to the relatively recent emergence of the henipaviruses and the practical constraints of performing functional genomics studies at high levels of containment, our understanding of the henipavirus infection cycle is incomplete.
View Article and Find Full Text PDFHendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells.
View Article and Find Full Text PDFHendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae) are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection.
View Article and Find Full Text PDFVaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al.
View Article and Find Full Text PDFBackground Information: Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens.
View Article and Find Full Text PDFDiffering and sometimes conflicting data have been reported regarding several aspects of vaccinia virus (VV) entry. To address this, we used a beta-galactosidase reporter virus to monitor virus entry into multiple cell types under varying conditions. Entry into HeLa, B78H1 and L cells was strongly inhibited by heparin whereas entry into Vero and BSC-1 cells was unaffected.
View Article and Find Full Text PDFL1 and A28 are vaccinia virus (VACV) envelope proteins which are essential for cellular entry. However, their specific roles during entry are unknown. We tested whether one or both of these proteins might serve as receptor binding proteins (RBP).
View Article and Find Full Text PDF