Interferometric laser ranging is an enabling technology for high-precision satellite-to-satellite tracking within the context of Earth observation, gravitational wave detection, or formation flying. In orbit, the measurement system is affected by environmental influences, particularly satellite attitude jitter and temperature fluctuations, imposing an instrument design with a high level of thermal stability and insensitivity to rotations around the spacecraft center of mass. The new design concept presented here combines different approaches for dynamic heterodyne laser ranging and features the inherent beam-tracking capabilities of a retroreflector in a mono-axial configuration.
View Article and Find Full Text PDFWe report on the implementation of a quantum process tomography technique known as direct characterization of quantum dynamics applied on coherent and incoherent single-qubit processes in a system of trapped (40)Ca(+) ions. Using quantum correlations with an ancilla qubit, direct characterization of quantum dynamics reduces substantially the number of experimental configurations required for a full quantum process tomography and all diagonal elements of the process matrix can be estimated with a single setting. With this technique, the system's relaxation times T(1) and T(2) were measured with a single experimental configuration.
View Article and Find Full Text PDFIn general, a quantum measurement yields an undetermined answer and alters the system to be consistent with the measurement result. This process maps multiple initial states into a single state and thus cannot be reversed. This has important implications in quantum information processing, where errors can be interpreted as measurements.
View Article and Find Full Text PDFThe computational potential of a quantum processor can only be unleashed if errors during a quantum computation can be controlled and corrected for. Quantum error correction works if imperfections of quantum gate operations and measurements are below a certain threshold and corrections can be applied repeatedly. We implement multiple quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions.
View Article and Find Full Text PDFWe report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits. The observed decay agrees with a theoretical model which assumes a system affected by correlated, Gaussian phase noise.
View Article and Find Full Text PDFThe control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored.
View Article and Find Full Text PDFPhys Rev Lett
November 2009
Any residual coupling of a quantum computer to the environment results in computational errors. Encoding quantum information in a so-called decoherence-free subspace provides means to avoid these errors. Despite tremendous progress in employing this technique to extend memory storage times by orders of magnitude, computation within such subspaces has been scarce.
View Article and Find Full Text PDFGates acting on more than two qubits are appealing as they can substitute complex sequences of two-qubit gates, thus promising faster execution and higher fidelity. One important multiqubit operation is the quantum Toffoli gate that performs a controlled NOT operation on a target qubit depending on the state of two control qubits. Here we present the first experimental realization of the quantum Toffoli gate in an ion trap quantum computer, achieving a mean gate fidelity of 71(3)%.
View Article and Find Full Text PDFWe report on the first absolute transition frequency measurement at the 10;{-15} level with a single, laser-cooled 40Ca+ ion in a linear Paul trap. For this measurement, a frequency comb is referenced to the transportable Cs atomic fountain clock of LNE-SYRTE and is used to measure the 40Ca+ 4s ;{2}S_{1/2}-3d ;{2}D_{5/2} electric-quadrupole transition frequency. After the correction of systematic shifts, the clock transition frequency nu_{Ca;{+}}=411 042 129 776 393.
View Article and Find Full Text PDFEntanglement is recognized as a key resource for quantum computation and quantum cryptography. For quantum metrology, the use of entangled states has been discussed and demonstrated as a means of improving the signal-to-noise ratio. In addition, entangled states have been used in experiments for efficient quantum state detection and for the measurement of scattering lengths.
View Article and Find Full Text PDFThe generation, manipulation and fundamental understanding of entanglement lies at the very heart of quantum mechanics. Entangled particles are non-interacting but are described by a common wavefunction; consequently, individual particles are not independent of each other and their quantum properties are inextricably interwoven. The intriguing features of entanglement become particularly evident if the particles can be individually controlled and physically separated.
View Article and Find Full Text PDF