Colloidal clusters with well-controlled shapes have attracted extensive interest in the fields of materials, chemistry, physics, and biology. This communication reports the controllable fabrication of photoresponsive colloidal clusters with a wide range of adjustable sizes and complex architectures through an approach of microsphere formation and fusion. The clusters of colloidal spheres were obtained adding ethanol dropwise into a tetrahydrofuran solution of an isosorbide-based azo compound (IAC-4).
View Article and Find Full Text PDFPhotodeformable submicron Janus particles (JPs), containing an epoxy-based azo polymer (BP-AZ-CN) and poly(methyl methacrylate) (PMMA), were fabricated upon nonsolvent-induced phase separation. The formation of the JPs was induced by gradually adding deionized water into a tetrahydrofuran (THF) solution of both polymers. The results show that the two polymers start to precipitate from the solution at almost the same water content and immediately separate into two phases in each particle due to the strong incompatibility between the two components.
View Article and Find Full Text PDFA new kind of Janus droplet containing photoresponsive cholesteric liquid crystals (CLCs) was fabricated for the first time and their formation, compartment structure, mesophase texture and function were thoroughly investigated. In the droplets, the CLC compartments included a typical nematic LC (4'-pentyl-4-biphenylcarbonitrile) doped with an azobenzene-containing chiral dopant, and the other compartments were formed of a poly(dimethylsiloxane)-based oligomer. Janus droplets were fabricated through microphase separation of the incompatible components in chloroform solution dispersed in an aqueous medium, induced by slow evaporation of chloroform.
View Article and Find Full Text PDFA nitrogen-doped carbon supported nanocobalt catalyst was developed and successfully applied for the hydrogen-transfer coupling of quinolinium salts and tetrahydroquinoline compounds. The selective coupling of the C6 sites of tetrahydroquinolines (THQs) with the α sites of quinoline salts generated a series of 2-substituted -alkyl-tetrahydroquinolines. This catalytic conversion method, which can be employed to synthesize various functionalized tetrahydroquinolines, has several advantages that include excellent hydrogen transfer selectivity, a reusable and inexpensive catalyst, and environmental friendliness.
View Article and Find Full Text PDFPhotoinduced surface-relief-gratings (SRGs) on azo polymer and azo molecular glass films, caused by - isomerization of azo chromophores, have attracted wide interest for their intriguing nature and many possible applications in recent years. Understanding the mechanical properties of SRGs at the nanoscale is critically important for elucidating their formation mechanism and exploring their applications. In this work, a representative azo polymer (BP-AZ-CA) and a typical azo molecular glass (IAC-4) were comparatively studied for the first time concerning their properties related to SRG formation through a variety of methods.
View Article and Find Full Text PDFThis work investigated a unique type of triphasic colloidal particles composed of an azo polymer (PCNAZO), a fluorescent pyrene-containing polymer [P(MMA--PyMA)], and a poly(dimethylsiloxane)-based polymer (Hpdca-PDMS), focusing on the synthesis, forming mechanism, morphology control, and functions. The triphasic particles with well-defined morphologies were assembled through the microphase separation of the components in dichloromethane (DCM) droplets in an aqueous medium, induced by the gradual evaporation of the organic solvent. The real-time fluorescence emission spectra of the pyrenyl moieties and microscopic observations show that the formation of the triphasic particles undergoes the segregation of the PCNAZO-rich phase, separation between P(MMA--PyMA)-rich and Hpdca-PDMS-rich phases, coalescence, and solidification in the dispersed droplets.
View Article and Find Full Text PDFThis study focused on mussel-like surface adhesion and photoinduced cooperative deformation of a unique type of Janus particles (JPs), composed of an isosorbide-based molecular glass bearing push-pull type azo chromophore (IAC-4) and a 2,6-pyridinedicarboxamide-containing poly(dimethylsiloxane) oligomer (Hpdca-PDMS). The JPs were obtained by the solvent evaporation method in an aqueous medium with the dispersed phase of a solution of IAC-4 and Hpdca-PDMS in dichloromethane (DCM). The JP formation and its mechanism were investigated by electron microscopy, in situ optical microscopy, and theoretical analysis.
View Article and Find Full Text PDFThis study investigated Janus particles (JPs) composed of an azo polymer and a pyrene-containing polymer, focusing on preparation, formation mechanism, photoinduced deformation behavior, and fluorescent properties as well as tunable colors of the dispersions. A methacrylate-based copolymer containing pyrenyl groups (P(MMA--PyMA)) and two azo polymers, i.e.
View Article and Find Full Text PDFAzo molecular glass (IAC-4) microspheres with a monodispersed diameter over ten microns were fabricated by microfluidics and unique shape manipulation was achieved based on their fascinating photoinduced deformation behaviour. After irradiation with a polarized laser beam (λ = 488 nm), the IAC-4 microspheres were transformed into uniform mushroom-like particles, and their three-dimensional (3D) asymmetric shapes were precisely manipulated by adjusting the irradiation time and the polarization state of light. By observing the particle morphology in three orthogonal views (top view, front view and side view) by scanning electron microscopy (SEM), the photoinduced deformation behaviour of the ten-micron-sized particles was comprehensively revealed in the 3D space for the first time.
View Article and Find Full Text PDF