Publications by authors named "Chuxiong Zhuang"

Article Synopsis
  • Leaves are vital for rice growth, serving as sites for photosynthesis, and early leaf senescence can significantly reduce rice yields.
  • Mutations in OsAGO2 lead to premature leaf senescence characterized by reduced chlorophyll and abnormal chloroplast structures.
  • The study reveals that OsAGO2 regulates leaf senescence through DNA methylation of OsNAC300, which, when overexpressed, mimics senescence, indicating a complex regulatory mechanism involving OsAGO2, OsNAC300, and OsNAP.
View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection.

View Article and Find Full Text PDF

Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs.

View Article and Find Full Text PDF

Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2.

View Article and Find Full Text PDF

Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice.

View Article and Find Full Text PDF

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown.

View Article and Find Full Text PDF

Organ size shapes plant architecture during rice (Oryza sativa) growth and development, affecting key factors influencing yield, such as plant height, leaf size, and seed size. Here, we report that the rice Enhancer of Zeste [E(z)] homolog SET DOMAIN GROUP 711 (OsSDG711) regulates organ size in rice. Knockout of OsSDG711 produced shorter plants with smaller leaves, thinner stems, and smaller grains.

View Article and Find Full Text PDF

Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC).

View Article and Find Full Text PDF

Uridine diphosphate (UDP)-sugars are important metabolites involved in the biosynthesis of polysaccharides and may be important signaling molecules. UDP-glucose 4-epimerase (UGE) catalyzes the interconversion between UDP-Glc and UDP-Gal, whose biological function in rice (Oryza sativa) fertility is poorly understood. Here, we identify and characterize the botryoid pollen 1 (bp1) mutant and show that BP1 encodes a UGE that regulates UDP-sugar homeostasis, thereby controlling the development of rice anthers.

View Article and Find Full Text PDF

Mulberry is a valuable woody plant with significant economic importance. It can be propagated through two main methods: cutting and grafting. Waterlogging can have a major impact on mulberry growth and can significantly reduce production.

View Article and Find Full Text PDF

Photosynthesis is the largest mass- and energy-conversion process on Earth, and it is the material basis for almost all biological activities. The efficiency of converting absorbed light energy into energy substances during photosynthesis is very low compared to theoretical values. Based on the importance of photosynthesis, this article summarizes the latest progress in improving photosynthesis efficiency from various perspectives.

View Article and Find Full Text PDF

Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses.

View Article and Find Full Text PDF

Environment-sensitive genic male sterility is a type of male sterility that is affected by both genetic and environmental factors. Environment-sensitive genic male sterile lines are not only used in two-line hybrid breeding but are also good materials for studying plant-environment interactions. In this study we review the research progress on environment-sensitive genic male sterility in rice from the perspectives of epigenetic, transcriptional, posttranscriptional, posttranslational and metabolic mechanisms as well as signal transduction processes.

View Article and Find Full Text PDF

A FT/TFL1 subfamily gene, rice CENTRORADIALIS 2, also known as RCN1, regulates seed germination and increase salt tolerance via ABA-mediated pathway. The ABA synthesis and metabolism related genes were changed relative expression levels. Seed germination is a complex biological process that is affected by many factors.

View Article and Find Full Text PDF

Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.

View Article and Find Full Text PDF

The development of thermosensitive genic male sterile (TGMS) lines is the key to breeding two-line hybrid rice, which has been widely applied in China to increase grain yield. CRISPR/Cas9 has been widely used in genome editing to create novel mutants in rice. In the present study, a super grain quality line, GXU 47, was used to generate a new TGMS line with specific mutations in a major TGMS gene generated with CRISPR/Cas9-mediated genome editing in order to improve the rice quality of two-line hybrids.

View Article and Find Full Text PDF

Grain size is one of the crucial factors determining grain yield. However, the genetic and molecular mechanisms of florigen repression complexes (FRCs) underlying grain size in rice (Oryza sativa L.) have not been reported.

View Article and Find Full Text PDF

Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostability in plants. However, the molecular mechanisms controlling this trait remain unknown.

View Article and Find Full Text PDF

A sandwich Ct real-time PCR (SC-PCR) was used to detect single-copy T-DNA plants by visualizing Ct patterns of T-DNA and two reference amplicons. Detecting the T-DNA copy number directly by visualizing the Ct pattern eliminates the errors introduced by multistep calculations of relative Ct values. Using SC-PCR, we found that single-copy T-DNA integrations were more frequent in transgenic T Arabidopsis without a vector backbone.

View Article and Find Full Text PDF

Most plant pentatricopeptide repeat (PPR) proteins localize to and function inside plastids and mitochondria. However, the function of PPRs that only localize to the cytoplasm remains unknown. Here, we demonstrated that the rice (Oryza sativa) PPR protein CYTOPLASM-LOCALIZED PPR1 (OsCPPR1) contributes to pollen development and localizes to the cytoplasm.

View Article and Find Full Text PDF

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions.

View Article and Find Full Text PDF

Background: Leaf senescence is a highly complex and meticulous regulatory process, and the disruption of any factor involved in leaf senescence might lead to premature or delayed leaf senescence and thus result in reduced or increased crop yields. Despite sincere efforts by scientists, there remain many unsolved problems related to the regulatory factors and molecular mechanisms of leaf senescence.

Results: This study successfully revealed that OsHXK1 was highly expressed in senescent leaves of rice.

View Article and Find Full Text PDF

Rice ( L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China.

View Article and Find Full Text PDF

Humidity-sensitive genic male sterility (HGMS) is a novel type of environment-sensitive male sterility (EGMS) which plants are male sterile at low humidity and male fertile at high humidity. Previous studies have revealed that OsCER1 contributes to very-long-chain (VLC) alkanes biosynthesis in rice (Oryza sativa L.).

View Article and Find Full Text PDF

TMS5 encodes an RNase Z protein that can process ubiquitin-60S ribosomal protein L40 family (Ub) mRNAs to regulate thermo-sensitive genic male sterility in rice. Despite the importance of this protein, the structural characteristics and substrate recognition properties of RNase Z remain unclear. Here, we found that the variations in several conservative amino acids alter the activation of RNase Z, and its recognition of RNA substrates depends on the structure of RNA.

View Article and Find Full Text PDF