Natural products have perennially served as a cornerstone for the genesis of novel medicinal compounds. Most clinical therapeutics originate from ancestral herbal remedies and their formulations. Scholars and practitioners have always aimed to extract better remedies to treat various ailments.
View Article and Find Full Text PDFExosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents.
View Article and Find Full Text PDFBackground: Throughout history, plants have played a crucial role in advancing medicinal treatments by providing a diverse range of compounds for the development of innovative therapies. L. a tropical herb of the Cannaceae family, also known as Indian shot, has a rich history of traditional use in treating ailments like inflammation, malaria, dysentery, fever, dropsy, and diarrhea.
View Article and Find Full Text PDFIntroduction: Baccaurea motleyana Müll. Arg. (Rambai), an Asian fruit belonging to the Phyllanthaceae family, is cultivated throughout Southeast Asia and has been traditionally utilized in folk medicine to address eye discomfort, digestive issues, insomnia, and fevers.
View Article and Find Full Text PDFCancer immunotherapy, leveraging antibodies, excels in targeting efficacy but faces hurdles in tissue penetration, oral delivery, and prolonged half-life, with costly production and risk of adverse immunogenic effects. In contrast, small molecule immuno-oncology agents provide favorable pharmacokinetic properties and benign toxicity profiles. These agents are well-positioned to address the limitations of antibody-based immunotherapies, augment existing treatment modalities, and achieve synergistic effects when combined with antibodies.
View Article and Find Full Text PDFWater hyacinth (Eichhornia crassipes (Mart.) Solms) is a highly invasive aquatic weed native to the Amazonia basin, known for its rapid propagation, adaptability, and utilization in traditional medicine. The study aims to unveil the therapeutic potential of water hyacinth flowers methanolic extract (EC CME) and its four kupchan fractions (EC PESF, EC DCMSF, EC EASF, EC ASF) through diversified chemical-pharmacological approaches.
View Article and Find Full Text PDFBackground: A limited number of studies have examined the use of radiomics to predict 3-year overall survival (OS) after hepatectomy in patients with hepatocellular carcinoma (HCC). This study develops 3-year OS prediction models for HCC patients after liver resection using MRI radiomics and clinicopathological factors.
Materials And Methods: A retrospective analysis of 141 patients who underwent surgical resection of HCC was performed.
ACS Appl Mater Interfaces
July 2024
Background & Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods: Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG).
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway.
View Article and Find Full Text PDFThe skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities.
View Article and Find Full Text PDFIn this work, a series of bifunctional PD-L1/CD73 (cluster of differentiation 73) small-molecule inhibitors were designed and synthesized. Among them, showed the strongest PD-L1 inhibitory effects with an IC of 6 nM and potent anti-CD73 activity with an IC of 0.773 μM.
View Article and Find Full Text PDFIn this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC values between 0.11 and 71.
View Article and Find Full Text PDFSirolimus is a regularly applied immunosuppressant for patients undergoing liver transplantation (LT) for hepatocellular carcinoma (HCC). Sirolimus not only significantly inhibits HCC recurrence but also protects renal function. However, the improvement effect of sirolimus on nontumour-related death in patients is still unknown.
View Article and Find Full Text PDFPolyphenolic compounds have shown promising neuroprotective properties, making them a valuable resource for identifying prospective drug candidates to treat several neurological disorders (NDs). Numerous studies have reported that polyphenols can disrupt the nuclear factor kappa B(NF-κB) pathway by inhibiting the phosphorylation or ubiquitination of signaling molecules, which further prevents the degradation of IκB. Additionally, they prevent NF-κB translocation to the nucleus and pro-inflammatory cytokine production.
View Article and Find Full Text PDFBackground: Salvage liver transplantation (SLT) has been reported to be an efficient treatment option for patients with recurrent hepatocellular carcinoma (HCC) after liver resection (LR). However, for recipients who underwent liver transplantation (LT) due to recurrent HCC after LR in China, the selection criteria are not well established.
Methods: In this study, data from the China Liver Transplant Registry (CLTR) of 4,244 LT performed from January 2015 to December 2019 were examined, including 3,498 primary liver transplantation (PLT) and 746 SLT recipients.
Malignant hyperthermia (MH) is an inherited skeletal muscle disorder caused primarily by a genetic mutation, usually in the calcium channel gene of the muscle. This mutation can lead to muscle hypersensitivity to volatile anesthetics (such as sevoflurane) and the depolarizing muscle relaxant succinylcholine, resulting in hyperthermia, muscle stiffness, metabolic disturbances, and other severe physiological reactions. This condition may prove fatal unless it is recognized in its early stages and treatment is administered promptly and aggressively.
View Article and Find Full Text PDFEnzyme-driven micro/nanomotors consuming chemical fuels have attracted lots of attention for biomedical applications. However, motor systems composed by organism-derived organics that maximize the therapeutic efficacy of enzymatic products remain challenging. Herein, swimming proteomotors based on biocompatible urease and human serum albumin are constructed for enhanced antitumor therapy active motion and ammonia amplification.
View Article and Find Full Text PDFBackground: Microvascular invasion (MVI) is an independent detrimental risk factor for tumor recurrence and poor survival in hepatocellular carcinoma (HCC). Competitive endogenous RNA (ceRNA) networks play a pivotal role in the modulation of carcinogenesis and progression among diverse tumor types. However, whether the ceRNA mechanisms are engaged in promoting the MVI process in patients with HCC remains unknown.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is a cancerous tumor that ranks as the third leading cause of cancer death across the globe. Protein kinase membrane-associated tyrosine/threonine kinase 1 (PKMYT1) is overexpressed in many cancer types, including HCC, but the potential mechanism and biological function of PKMYT1 are not fully understood.
Materials And Methods: The expression level of PKMYT1 was detected in human HCC tissues and adjacent tissues.