Publications by authors named "Chuxian He"

Zeolitic imidazolate framework (ZIF-8) base-aptamer "gate-lock" biomaterial probes have been synthesized for monitoring intracellular deoxynivalenol (DON) and cytochrome c (cyt c) levels. The aptamer and organic fluorescent dye were regarded as a recognition element and a sensing element, respectively. In the presence of DON, the aptamers of DON and cyt c were specifically bound with the DON and induced cyt c, leading to the dissociation of aptamers from the porous surface of the probes.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is considered a mycotoxin that is toxic to the agricultural environment and human body. It is necessary to study the pathophysiological mechanism of DON toxicity at the cellular level. Cytochrome c (Cyt c), as an important biomarker of DON-induced apoptosis that may lead to a bipartite 'point-of-no return' event, is of great significance to be detected using cell imaging.

View Article and Find Full Text PDF

Herein, a new double-enzymes-modulated fluorescent assay based on the quenching of upconversion nanoparticles (UCNPs) by Fe was constructed for sensitive determination of OPs. OPs can inhibit the activity of acetylcholinesterase to reduce the production of choline and further lead to the lack of HO in the presence of choline oxidase. Therefore, Fe cannot be converted into Fe, resulting in "turn-on" fluorescence of UCNPs.

View Article and Find Full Text PDF

Deoxynivalenol (DON), a trichothecene mycotoxin, has attracted global attention due to its prevalence and substantial effects on animal and human health. DON induces the upregulation of intracellular reactive oxygen species (ROS) by disrupting the normal mitochondrial functionality, which causes oxidative stress, cell apoptosis, and even severe disorders. The aim of present work is to develop a simple, convenient, and in situ method for monitoring ROS and evaluating DON-mediated oxidative stress.

View Article and Find Full Text PDF

This paper describes the fabrication of an imprinted fluorescent nanoprobe based on SiO-coated NaYF: Yb, Er upconversion nanoparticles (UCNP) encapsulated with a molecularly imprinted polymer (MIP) for determination of acetamiprid. The fluorescent MIP nanoprobe was prepared using UCNP as the material for fluorescence signal readout, acetamiprid as template molecule, methylacrylic acid (MAA) as functional monomer, and ethyleneglycol dimethacrylate (EGDMA) as cross-linking agent. The molecular imprinting layers were immobilized on the surface of the UCNP@SiO by polymerization which occurred between the double bonds.

View Article and Find Full Text PDF

Herein, we constructed an aptamer-based sensor for the sensitive and highly specific detection of Shigella sonnei via surface enhanced Raman spectroscopy (SERS) analysis. A composite material integrated of the Raman active 4-MBA ligand of the Eu-complex and citrate-stabilized Au nanoparticles (cit-Au NPs) was synthesized and served as both active substrate and Raman reporter. Aptamers targeted to S.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is regarded as the most common contaminant of cereal grains. Therefore, finding an efficient and safe detoxification technology is of great significance in the field of food. In this study, upconversion nanoparticles@TiO composites were used for the photocatalytic degradation of DON in wheat.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is one of the most globally prevalent mycotoxins mainly produced by Fusarium species. It can cause pollution to water environmental quality due to its water solubility. Therefore, it is necessary to develop a green and efficient detoxification technology for DON.

View Article and Find Full Text PDF

Techniques that are sensitive to detect mercury ion (Hg) are very important, due to its serious threat to public health and food security. In this work, a colorimetric aptasensor was fabricated for the detection of Hg based on rolling circle amplification (RCA). The aptamer was immobilized onto the microplate and hybridized with its complementary strand (cDNA) which linked with a primer for triggering the RCA reaction of circular template.

View Article and Find Full Text PDF

Micro-nano composite material was prepared to adsorb Hg(II) ions via the co-precipitation method. Oyster shell (OS), FeO nanoparticles, and humic acid (HA) were used as the raw materials. The adhesion of nanoparticles to OS displayed by scanning electron microscopy (SEM), the appearance of the (311) plane of standard FeO derived from X-ray diffraction (XRD), and the transformation of pore sizes to 50 nm and 20 μm by mercury intrusion porosimetry (MIP) jointly revealed the successful grafting of HA-functionalized FeO onto the oyster shell surface.

View Article and Find Full Text PDF