Publications by authors named "Chutong Tian"

Larotaxel (LTX) and SB-T-1214 (SBT), two new synthetic experimental toxoids, have shown broad-spectrum antitumor activity, especially against tumors that are resistant to other drugs. However, their poor solubility, membrane permeability, and first-pass effect limits their use in oral administration. We designed and synthesized two long-chain triglyceride-mimic prodrugs of LTX (LTXSSTG) and SBT (SBTSSTG), which are bridged by disulfide bonds and efficiently incorporated them into Self-nanoemulsifying drug delivery system (SNEDDS).

View Article and Find Full Text PDF

Small molecule prodrugs self-assembled nano-delivery systems with tumor responsive linkages are emerging as an effective platform. However, the heterogeneity of tumor microenvironment may limit the anti-tumor effect of prodrug nanomedicines with a single response module. Here, we chose disulfide bond as the response module and branched chain alcohol as the self-assembly modification module to construct a single-responsive prodrug.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy often faces challenges due to its limited effectiveness and severe side effects; researchers developed SANTA FE OXA, a self-assembled nanomicelle to tackle these issues.
  • SANTA FE OXA targets tumor cells via hyaluronic acid, delivering the oxaliplatin prodrug and ferrocene methanol, which, once inside the cells, leads to DNA damage and increased hydrogen peroxide levels.
  • In tests, SANTA FE OXA demonstrated up to 76.61% tumor growth inhibition while reducing systemic toxicity associated with traditional platinum-based chemotherapy, marking a significant improvement in cancer treatment.
View Article and Find Full Text PDF
Article Synopsis
  • Tumor cells often resist DNA-damaging treatments due to strong DNA repair mechanisms like homologous recombination, diminishing the efficacy of drugs like SN38.
  • To overcome this, researchers developed a new nano-strategy combining SN38 with the BET inhibitor JQ-1, creating prodrugs that enhance cancer treatment by impairing the DNA repair process.
  • The resulting nanostructure, SJNP, effectively targets triple-negative breast cancer in mice, reducing toxicity while increasing DNA damage through disruption of key proteins and elevation of reactive oxygen species (ROS) levels.
View Article and Find Full Text PDF
Article Synopsis
  • * This study introduces a novel drug delivery system using hybrid exosomes derived from adipocytes that effectively target HCC cells and enhance the treatment's tumor-fighting capabilities.
  • * The engineered system, which combines a prodrug of docetaxel with lipid-based nanoparticles, shows significant effectiveness in reducing tumor growth while minimizing side effects, paving the way for future HCC therapies.
View Article and Find Full Text PDF

The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (, ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional ferroptosis inducers like erastin and RSL3 show great promise for clinical use, leading to the development of new small molecule inducers that are more stable and specific, avoiding apoptosis while targeting cancer cells.
  • * Despite progress, challenges such as drug delivery, tumor targeting, and circulation time remain, prompting research into innovative delivery systems for more effective cancer treatments using ferroptosis inducers.
View Article and Find Full Text PDF

Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs.

View Article and Find Full Text PDF

Owing to the serious clinical side effects of intravenous Taxol, an oral chemotherapeutic strategy is expected to be promising for paclitaxel (PTX) delivery. However, its poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity need to be overcome. A triglyceride (TG)-like prodrug strategy facilitates oral drug delivery by bypassing liver metabolism.

View Article and Find Full Text PDF

Currently commercial fixed-concomitant three agents have multiple problems such as multiple dosing administration, poor efficacy and side effects. Once-daily fixed-combination timolol-netarsudil-latanoprost ophthalmic solution (FC-TNL) has the ability to treat glaucoma by lowering the intraocular pressure (IOP) with great efficacy and improving patient compliance. However, the commercialized netarsudil dimesylate precipitated when the pH of the solution was above 5.

View Article and Find Full Text PDF

The oral absorption of paclitaxel (PTX) is restricted by poor solubility in the gastrointestinal tract (GIT), low permeability, and high first-pass metabolism. Lipid carriers, such as a self-microemulsifying drug delivery system (SMEDDS), have been deemed as promising vehicles for promoting oral delivery of PTX. Herein, a lipophilic disulfide-bridged linoleic prodrug (PTX-S-S-LA) was synthesized and efficiently incorporated into SMEDDS to facilitate the oral absorption of PTX.

View Article and Find Full Text PDF

Despite explosive growth in the development of nano-drug delivery systems (NDDS) targeting tumors in the last few decades, clinical translation rates are low owing to the lack of efficient models for evaluating and predicting responses. Microfluidics-based tumor-on-a-chip (TOC) systems provide a promising approach to address these challenges. The integrated engineered platforms can recapitulate complex in vivo tumor features at a microscale level, such as the tumor microenvironment, three-dimensional tissue structure, and dynamic culture conditions, thus improving the correlation between results derived from preclinical and clinical trials in evaluating anticancer nanomedicines.

View Article and Find Full Text PDF

Oral administration of chemotherapy agents, such as docetaxel (DTX), is expected to reduce side effects significantly and increase dosing frequency. However, they often suffer from poor oral bioavailability, impeding their oral application. Dietary lipids such as triglycerides favor lymphatic transport nor vein system, bypassing the first-pass metabolism.

View Article and Find Full Text PDF

The unique characteristics of the tumor microenvironment (TME) could be exploited to develop antitumor nanomedicine strategies. However, in many cases, the actual therapeutic effect is far from reaching our expectations due to the notable tumor heterogeneity. Given the amplified characteristics of TME regulated by vascular disrupting agents (VDAs), nanomedicines may achieve unexpected improved efficacy.

View Article and Find Full Text PDF

Off-target drug release and insufficient drug delivery are the main obstacles for effective anticancer chemotherapy. Prodrug-based self-assembled nanoparticles bioactivated under tumor-specific conditions are one of the effective strategies to achieve on-demand drug release and effective tumor accumulation. Herein, stimuli-activable prodrugs are designed yielding smart tumor delivery by combination of the triglyceride-mimic (TG-mimetic) prodrug structure and disulfide bond.

View Article and Find Full Text PDF

The first-generation taxanes (including paclitaxel and docetaxel) are widely used for the treatment of various cancers in clinical settings. In the past decade, a series of new-generation taxanes have been developed which are effective in the inhibition of tumor resistance. However, intravenous (i.

View Article and Find Full Text PDF

The oral absorption of chemotherapeutical drugs is restricted by poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity. Intestinal lymphatic transport of lipophilic prodrugs is a promising strategy to improve the oral delivery efficiency of anticancer drugs via entrapment into a lipid formulation and to avoid first-pass metabolism. However, several basic principles have still not been clarified, such as intestinal digestibility and stability and on-site tumor bioactivation.

View Article and Find Full Text PDF

Background: Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.

Methods: We summarize the general description of MCT1 and provide a comprehensive understanding of the role of MCT1 in brain diseases and cancers.

View Article and Find Full Text PDF

Liposomal drug delivery has become an established technology platform to deliver dual drugs to produce synergistic effects and reduce the adverse effects of traditional chemotherapy. Gambogic acid (GA) and retinoic acid (RA) are both effective anticancer components, but their low water-solubility (gambogic acid < 0.0050 mg/mL, retinoic acid 0.

View Article and Find Full Text PDF

Oligopeptide transporter 1 (PepT1) has been a striking prodrug-designing target. However, the underlying mechanism of PepT1 as a target to facilitate the oral absorption of nanoparticles (NPs) remains unclear. Herein, we modify Poly (lactic-co-glycolic acid) (PLGA) NPs with the conjugates of dipeptides (L-valine-valine, L-valine-phenylalanine) and polyoxyethylene (PEG Mw: 1000, 2000) stearate to facilitate oral delivery of docetaxel (DTX) to investigate the oral absorption mechanism and regulatory effects on PepT1 of the dipeptide-modified NPs.

View Article and Find Full Text PDF