Sugarcane bagasse (SCB) was utilized for efficiently producing optically pure D-(-)-lactate by Klebsiella oxytoca KIS004-91T strain. Cellulase (15 U/g NaOH-treated SCB) sufficiently liberated high sugars with saccharifications of 79.8 % cellulose and 52.
View Article and Find Full Text PDFKlebsiella oxytoca KP001-TF60 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflBΔtdcDΔpmd) was re-engineered to direct more carbon flux towards succinate production with less acetate. Glucose uptake, cell growth, and carbon distribution were restricted by alterations in relative expressions and nucleotide sequences of genes associated with PEP and pyruvate metabolisms. Transcripts of pck, ppc, and frd genes were up-regulated for enhancing NADH reoxidation during succinate production while increased pyk and tdcE transcripts were observed due to maintenance of acetyl-CoA through the oxidative branch of TCA cycle.
View Article and Find Full Text PDFIn this study, a newly isolated F3 was used as probiotic starter for producing fermented soymilk to enhance antioxidant properties with high antimicrobial activity against food-borne pathogens. The objectives of this study were to investigate optimized fermentation parameters of soymilk for enhancing antioxidant property by F3 and to assess the dynamic antimicrobial activity of the fermented soymilk during co-culturing against candidate food-borne pathogens. Based on central composite design (CCD) methodology, the maximum predicted percentage of antioxidant activity was 78.
View Article and Find Full Text PDFKlebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted.
View Article and Find Full Text PDF