Water saving in rice cultivation has assumed paramount importance, especially in the context of climate change. The introduction of sheet-pipe technology in Indonesia heralded as an innovative subsurface irrigation and drainage system, is poised to revolutionize how to manage this vital resource. Our study was designed with two primary objectives: first, to investigate how rice plants respond when water levels are deliberately reduced using the sheet-pipe technology; and second, to comprehensively analyze water productivity and water use efficiency in comparison to conventional flooded rice cultivation systems.
View Article and Find Full Text PDFPhysical properties of peat are widely applied to detect the quality of peatland ecosystem. A comprehensive dataset on the peat properties is the foundation for the development tool and model of peat ecosystem, especially in region with frequent wildfire. Here we established a tabular dataset for physical properties of lowland tropical peatland in Indonesia.
View Article and Find Full Text PDFPeatland is a unique ecosystem that is key in regulating global carbon cycle, climate, hydrology, and biodiversity. Peat moisture content is a key variable in ecohydrological and biogeochemical cycles known to control peatland's greenhouse gas emissions and fire vulnerability. Peat moisture is also an indicator of the success of peat restoration projects.
View Article and Find Full Text PDFRed-green-blue (RGB) channels of RGB digital photographs were loaded with luminosity-adjusted R, G, and completely white grayscale images, respectively (RGwhtB method), or R, G, and R + G (RGB yellow) grayscale images, respectively (RGrgbyB method), to adjust the brightness of the entire area of multi-temporally acquired color digital photographs of a rice canopy. From the RGwhtB or RGrgbyB pseudocolor image, cyan, magenta, CMYK yellow, black, L*, a*, and b* grayscale images were prepared. Using these grayscale images and R, G, and RGB yellow grayscale images, the luminosity-adjusted pixels of the canopy photographs were statistically clustered.
View Article and Find Full Text PDF