Publications by authors named "Chushu Zhu"

Sweat, a noninvasive metabolic product of normal physiological responses, offers valuable clinical insights into body conditions without causing harm. Key components in sweat, such as urea and glucose, are closely linked to kidney function and blood glucose levels. Portable sweat sensors, equipped with diverse sensing systems, can monitor fluctuations in urea and glucose concentrations, thus providing methods for assessing kidney function and monitoring diabetes.

View Article and Find Full Text PDF

Cortisol, known as the "stress hormone", is secreted by the adrenal cortex. Measuring cortisol levels in body fluids is essential for evaluating stress levels, adrenal function, hormone imbalance, and psychological well-being. Early diagnosis and management of related conditions depend on this measurement.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a novel spectroscopic technique that enables the identification of analytes through analysis of their unique chemical signatures. Its high sensitivity, specificity, and rapid response make it a valuable tool in a range of fields, including biological detection, food safety, and environmental monitoring. However, traditional SERS nanoparticle substrates are susceptible to instability and agglomeration.

View Article and Find Full Text PDF
Article Synopsis
  • A method was created to produce Au-Au nanorod array substrates, enhancing surface-enhanced Raman scattering (SERS) performance by adding granular structures to the existing Au nanorod array.
  • * The enhanced SERS effect allows for improved detection sensitivity, reaching as low as 10 M with probe molecules compared to traditional Au nanorod arrays.
  • * The substrate was effectively used for pesticide detection and featured an advanced analytical model combining random forests and a convolutional neural network for precise identification of specific chemicals like thiram.
View Article and Find Full Text PDF

Low-cost detection of miRNAs has caught broad attention in recent years due to the potential application of these small noncoding RNAs for diagnostics and therapeutic purposes. Their small size and low abundance, however, derive challenges in engineering robust detection tools. To date, multiple detection assays have been developed to achieve highly specific recognition of trace amount of miRNA with state-of-the-art nucleic acid detection and signal amplification techniques.

View Article and Find Full Text PDF

The pivotal roles of miRNAs in carcinogenesis, metastasis, and prognosis have been demonstrated recently in various cancers. This study intended to investigate the specific roles of hsa-miR-654-5p in lung cancer, which is, in general, rarely discussed. A series of closed-loop bioinformatic functional analyses were integrated with in vitro experimental validation to explore the overall biological functions and pan-cancer regulation pattern of miR-654-5p.

View Article and Find Full Text PDF

This study presents a novel sandwich composite structure that was designed for the ultra-sensitive detection of cyclotrimethylenetrinitramine (RDX). Au nanorod arrays (Au NRAs) were prepared and bound to 10M 6-MNA as adsorption sites for RDX, while Au nanorods (Au NRs) were modified using 10M 6-MNA as SERS probes. During detection, RDX molecules connect the SERS probe to the surface of the Au NRAs, forming a novel type of Au NRAs-RDX-Au NRs 'sandwich' composite structure.

View Article and Find Full Text PDF

Gold (Au) and silver (Ag) are the main materials exhibiting strong Surface-Enhanced Raman Scattering (SERS) effects. The Ag nano-rods (AgNRs) and Au nano-rods (AuNRs) SERS substrates prepared using the technology of the oblique angle deposition (OAD) process have received considerable attention in recent years because of their rapid preparation process and good repeatability. However, AgNR substrates are unstable due to the low chemical stability of Ag.

View Article and Find Full Text PDF

Ultra-sensitive detection of 2,4,6-trinitrotoluene (TNT) plays an important role in society security and human health. The Raman probe molecule p-aminothiophenol (PATP) can interact with TNT in three ways to form a TNT-PATP complex. In this paper, a 'sandwich' structure was developed to detect TNT with high sensitivity.

View Article and Find Full Text PDF

Microgravity is a major environmental factor of space flight that triggers dysregulation of the immune system and increases clinical risks for deep-space-exploration crews. However, systematic studies and molecular mechanisms of the adverse effects of microgravity on the immune system in animal models are limited. Here, we establish a ground-based zebrafish disease model of microgravity for the research of space immunology.

View Article and Find Full Text PDF

Beyond their widespread application as genome-editing and regulatory tools, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems also play a critical role in nucleic acid detection due to their high sensitivity and specificity. Recently developed Cas family effectors have opened the door to the development of new strategies for detecting different types of nucleic acids for a variety of purposes. Precise and efficient nucleic acid detection using CRISPR-Cas systems has the potential to advance both basic and applied biological research.

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer-associated deaths among females. In recent decades, microRNAs (miRNAs), a type of short non-coding RNA that regulates gene expression at the post-transcription level, have been reported to participate in the regulation of many hub genes associated with tumorigenesis, tumor progression, and metastasis. However, the precise mechanism by which miRNAs regulate breast cancer metastasis remains poorly discussed, which limits the opportunity for the development of novel, effective therapeutic targets.

View Article and Find Full Text PDF

Over the decades, the biological role of microRNAs (miRNAs) in the post-transcriptional regulation of gene expression has been discovered in many cancer types, thus initiating the tremendous expectation of their application as biomarkers in the diagnosis, prognosis, and treatment of cancer. Hence, the development of efficient miRNA detection methods is in high demand. Extensive efforts have been made based on the intrinsic properties of miRNAs, such as low expression levels, high sequence homology, and short length, to develop novel miRNA detection methods with high accuracy, low cost, practicality, and multiplexity at point-of-care settings.

View Article and Find Full Text PDF

Synthetic scaffold systems, which exhibit enzyme clustering effect, have been considered as an important parallel approach for metabolic flux control and pathway enhancement. Here, we described an improved DNA-based scaffold system for synthetic tri-enzymatic pathway in Escherichia coli. With plasmid DNA serving as scaffold and exogenous enzymes fused with rationally designed transcription activator-like effectors (TALEs), our approach successfully clustered three TALE-fused enzymes and significantly increased the production of a mevalonate-producing tri-enzymatic pathway with the optimized scaffold structure and plasmid copy number.

View Article and Find Full Text PDF

MicroRNAs have been reported as related to multiple diseases and have potential applications in diagnosis and therapeutics. However, detection of miRNAs remains improvable, given their complexity, high cost, and low sensitivity as of currently. In this study, we attempt to build a novel platform that detects miRNAs at low cost and high efficacy.

View Article and Find Full Text PDF

For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis.

View Article and Find Full Text PDF