The Berry curvature and quantum metric are the imaginary part and real part, respectively, of the quantum geometric tensor, which characterizes the topology of quantum states. The Berry curvature is known to generate a number of important transport phenomena, such as the quantum Hall effect and the anomalous Hall effect; however, the consequences of the quantum metric have rarely been probed by transport measurements. Here we report the observation of quantum-metric-induced nonlinear transport, including both a nonlinear anomalous Hall effect and a diode-like non-reciprocal longitudinal response, in thin films of a topological antiferromagnet, MnBiTe.
View Article and Find Full Text PDFHexagonal boron nitride is not only a promising functional material for the development of two-dimensional optoelectronic devices but also a good candidate for quantum sensing thanks to the presence of quantum emitters in the form of atom-like defects. Their exploitation in quantum technologies necessitates understanding their coherence properties as well as their sensitivity to external stimuli. In this work, we probe the strain configuration of boron vacancy centers (VB) created by ion implantation in h-BN flakes thanks to wide-field spatially resolved optically detected magnetic resonance and submicro Raman spectroscopy.
View Article and Find Full Text PDFThe recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degrees of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect mainly focuses on the renormalization of phonon frequency. Here we demonstrate that the Raman polarization selection rules of optical phonons can be greatly modified by the magnetic ordering in 2D magnet CrI.
View Article and Find Full Text PDF