Publications by authors named "Churchward G"

Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma.

View Article and Find Full Text PDF

Undergraduate medical education curricula have increased in complexity over the past 25 years; however, the structures for administrative oversight of those curricula remain static. Although expectations for central oversight of medical school curricula have increased, individual academic departments often expect to exert control over the faculty and courses that are supported by the department. The structure of a governance committee in any organization can aid or inhibit that organization's functioning.

View Article and Find Full Text PDF

The important human pathogen Streptococcus pyogenes (the group A streptococcus or GAS) produces many virulence factors that are regulated by the two-component signal transduction system CovRS (CsrRS). Dissemination of GAS infection originating at the skin has been shown to require production of streptokinase, whose transcription is repressed by CovR. In this work we have studied the interaction of CovR and phosphorylated CovR (CovR-P) with the promoter for streptokinase, Pska.

View Article and Find Full Text PDF

The analysis of bacterial genomes has revealed an extraordinary array of conjugal elements (integrative and conjugative element or ICE) that reside in bacterial chromosomes. These elements contribute to the pan-genomes of individual species and confer a wide variety of properties on their bacterial hosts. ICEBs1 is a conjugal element found in Bacillus subtilis that has a remarkable regulatory mechanism that apparently favours conjugation when there are suitable recipient bacteria at high density or when the bacterial host is facing DNA-damaging stresses.

View Article and Find Full Text PDF

The group A streptococcus (GAS) causes a variety of human diseases, including toxic shock syndrome and necrotizing fasciitis, which are both associated with significant mortality. Even the superficial self-limiting diseases caused by GAS, such as pharyngitis, impose a significant economic burden on society. GAS can cause a wide spectrum of diseases because it elaborates virulence factors that enable it to spread and survive in different environmental niches within the human host.

View Article and Find Full Text PDF

The CovR/S system in Streptococcus pyogenes (Group A Streptococcus, or GAS), a two-component signal transduction/transcription regulation system, controls the expression of major virulence factors. The presence of a negative feedback loop distinguishes the CovR/S system from the majority of bacterial two-component systems. We developed a deterministic model of the CovR/S system consisting of eight delay differential equations.

View Article and Find Full Text PDF

The response regulator CovR acts as a master regulator of virulence in Streptococcus pyogenes by repressing transcription of approximately 15% of the group A streptococcus genome directly or indirectly. We demonstrate that phosphorylated CovR represses transcription of rivR directly by binding to conserved sequences located downstream from the promoter to block procession of RNA polymerase. This establishes the first link in a regulatory network where CovR interacts directly with other proteins that modulate gene expression.

View Article and Find Full Text PDF

The group A streptococcus (GAS), Streptococcus pyogenes, is an important human pathogen that causes infections ranging in severity from self-limiting pharyngitis to severe invasive diseases that are associated with significant morbidity and mortality. The pathogenic effects of GAS are mediated by the expression of virulence factors, one of which is the hyaluronic acid capsule (encoded by genes in the has operon). The expression of these virulence factors is controlled by the CovR/S (CsrR/S) two-component regulatory system of GAS which regulates, directly or indirectly, the expression of about 15% of the genome.

View Article and Find Full Text PDF

Orf20 of the conjugative transposon Tn916 was purified as a chimeric protein fused to maltose binding protein (MBP-Orf20). The chimeric protein possessed endonucleolytic activity, cleaving both strands of the Tn916 origin of conjugal transfer (oriT) at several distinct sites and favoring GT dinucleotides. Incubation of the oriT DNA with purified Tn916 integrase (Int) and MBP-Orf20 resulted in strand- and sequence-specific cleavage of oriT at a TGGT motif in the transferred strand.

View Article and Find Full Text PDF

CovR (CsrR) is a response regulator of gene expression in Streptococcus pyogenes. It regulates approximately 15% of the genome, including the genes encoding several streptococcal virulence factors, and acts primarily as a repressor rather than an activator of transcription. We showed that in vitro, CovR is sufficient to repress transcription from the sag promoter, which directs the expression of streptolysin S, a hemolysin that can damage the membranes of eukaryotic cells and subcellular organelles.

View Article and Find Full Text PDF

The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon.

View Article and Find Full Text PDF

Purified integrase protein (Int) of the conjugative transposon Tn916 was shown, using nuclease protection experiments, to bind specifically to a site within the origin of conjugal transfer of the transposon, oriT. A sequence similar to the ends of the transposon that are bound by the C-terminal DNA-binding domain of Int was present in the protected region. However, Int binding to oriT required both the N- and C-terminal DNA-binding domains of Int, and the pattern of nuclease protection differed from that observed when Int binds to the transposon ends and flanking DNA.

View Article and Find Full Text PDF

Coupling sequences are the 6 bp flanking the conjugative transposon Tn916 and are thought to play a role in determining the frequency of conjugative transposition. The affinity of binding of a chimeric protein, which consisted of maltose binding protein fused to the carboxy-terminal DNA binding domain of Tn916 integrase (Int), to different double-stranded oligonucleotide substrates containing coupling sequences associated with high- and low-frequency conjugative transposition was measured using a competition binding assay. The relative affinity of the chimeric protein was unaffected by the nature of the coupling sequences tested.

View Article and Find Full Text PDF

The binding of two chimeric proteins, consisting of the N-terminal or C-terminal DNA binding domain of Tn916 Int fused to maltose binding protein, to specific oligonucleotide substrates was analyzed by gel mobility shift assay. The chimeric protein with the N-terminal domain formed two complexes of different electrophoretic mobilities. The faster-moving complex, whose formation displayed no cooperativity, contained two protein monomers bound to a single DNA molecule.

View Article and Find Full Text PDF

Excision and formation of a covalently closed circular transposon molecule are required for conjugative transposition of Tn916 but are not the only factors that limit the frequency of conjugative transposition from one host to another. We found that in gram-positive bacteria, an increase in the frequency of excision and circularization of Tn916 caused by expression of integrase (Int) and excisionase (Xis) from a xylose-inducible promoter does not lead to an increase in the frequency of conjugative transposition. We also found that the concentration of Int and Xis in the recipient cell does not limit the frequency of conjugative transposition and that increased excision does not result in increased expression of transfer functions required to mobilize a plasmid containing the Tn916 origin of transfer.

View Article and Find Full Text PDF

The roles of purified Int and Xis proteins of the conjugative transposon Tn 916 in excision of a deletion derivative of the closely related element Tn 1545 were investigated. At a low salt concentration (37.5 mM NaCl), Int alone was able to promote limited excision to produce a covalently closed circular form of the transposon, showing that Tn 916 Int can catalyze both DNA cleavage and strand exchange.

View Article and Find Full Text PDF

We purified the Xis protein of the conjugative transposon Tn916 and showed by nuclease protection experiments that Xis bound specifically to sites close to each end of Tn916. These specific binding sites are close to, and in the same relative orientation to, binding sites for the N-terminal domain of Tn916 integrase protein. These results suggest that Xis is involved in the formation of nucleoprotein structures at the ends of Tn916 that help to correctly align the ends so that excision can occur.

View Article and Find Full Text PDF

The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate.

View Article and Find Full Text PDF

The DNA sequence of the promoter region of the Mycobacterium smegmatis rpsL gene, which encodes the S12 ribosomal protein, was determined. Primer extension analysis and S1 nuclease protection experiments identified the 5' end of the rpsL mRNA to be 199 bp upstream of the translation initiation codon. The rpsL promoter contained sequences upstream of this start point for transcription that were similar to the canonical hexamers found at the -10 and -35 regions of promoters recognized by Esigma70, the major form of RNA polymerase in Escherichia coli.

View Article and Find Full Text PDF

The conjugative transposon Tn916 inserts with widely different frequencies into a variety of target sites with related nucleotide sequences. The binding of chimeric proteins, consisting of maltose-binding protein fused to Tn916 integrase, to three different target sequences for Tn916 was examined by DNase I protection experiments. The C-terminal DNA binding domain of the Tn916 integrase protein was shown to protect approximately 40 bp, spanning target sites in the orfA and cat genes of the plasmid pIP501 and in the cylA gene of the plasmid pAD1.

View Article and Find Full Text PDF
Conjugative transposition.

Annu Rev Microbiol

February 1996

Conjugative transposons are important determinants of antibiotic resistance, especially in gram-positive bacteria. They are remarkably promiscuous and can conjugate between bacteria belonging to different species and genera. Transposon-promoted conjugation may be similar to F plasmid-promoted conjugation, as it appears that only one strand of the transposon DNA is transferred from donor to recipient.

View Article and Find Full Text PDF

The Mycobacterium smegmatis rpsL and rpsG genes, encoding the ribosomal proteins S12 and S7, were cloned, and their DNA sequence was determined. The third nucleotide of the S12 termination codon overlapped the first nucleotide of the S7 translation initiation codon. A collection of 28 spontaneous streptomycin-resistant mutants of M.

View Article and Find Full Text PDF

Transposition of the conjugative transposon Tn916 requires the activity of a protein, called Int, which is related to members of the integrase family of site-specific recombinases. This family includes phage lambda integrase as well as the Cre, FLP and XerC/XerD recombinases. Different proteins, consisting of fragments of Tn916 Int protein fused to the C-terminal end of maltose binding protein (MBP) were purified from Escherichia coli.

View Article and Find Full Text PDF

To investigate the role of binding sites for Rep initiation protein in the replication of pSC101, a series of plasmids was constructed which carried different combinations of mutations in three binding sites within the minimal origin of replication. Mutation of all three sites reduced the affinity of purified Rep protein for the origin by 100-fold, as measured by a competition binding assay. Mutations in individual binding sites prevented binding of Rep protein to the mutant site but not to adjacent wild-type sites.

View Article and Find Full Text PDF