Publications by authors named "Churaibhon Wisessaowapak"

Antimicrobial resistance poses a global health threat, with emerging as a notorious pathogen capable of forming stubborn biofilms and regulating virulence through quorum sensing (QS). In the quest for novel therapeutic strategies, this groundbreaking study unveils the therapeutic potential of Linn., an Asian medicinal plant containing various bioactive compounds, contributing to its antimicrobial activities, in the battle against .

View Article and Find Full Text PDF

We recently reported that arsenic caused insulin resistance in differentiated human neuroblastoma SH-SY5Y cells. Herein, we further investigated the effects of sodium arsenite on IGF-1 signaling, which shares downstream signaling with insulin. A time-course experiment revealed that sodium arsenite began to decrease IGF-1-stimulated Akt phosphorylation on Day 3 after treatment, indicating that prolonged sodium arsenite treatment disrupted the neuronal IGF-1 response.

View Article and Find Full Text PDF

We recently reported that arsenic disrupted neuronal insulin signaling. Here, we further investigated the effect of arsenic on insulin receptor substrate (IRS) proteins, which are crucial downstream signaling molecules of insulin in differentiated human neuroblastoma SH-SY5Y cells. We also found that prolonged arsenic treatment accelerated the migration of IRS1 and IRS2 on SDS-PAGE.

View Article and Find Full Text PDF

Herein, we examined whether prolonged arsenic exposure altered tau phosphorylation in the brain of Sprague Dawley rats expressing endogenous wild-type tau. The results showed that daily intraperitoneal injections of 2.5 mg/kg BW sodium arsenite over 28 days caused arsenic accumulation in the rat brain.

View Article and Find Full Text PDF

Previously, we reported that prolonged arsenic exposure impaired neuronal insulin signaling. Here we have further identified novel molecular mechanisms underlying neuronal insulin signaling impairment by arsenic. Arsenic treatment altered insulin dose-response curve and reduced maximum insulin response in differentiated human neuroblastoma SH-SY5Y cells, suggesting that arsenic hindered neuronal insulin signaling in a non-competitive like manner.

View Article and Find Full Text PDF

Arsenic is a metalloid that has been hypothesized to be an environmental risk factor for Alzheimer's disease (AD), a disease having hyperphosphorylated tau aggregate as a marker. The present study demonstrated that prolonged exposure to sodium arsenite at low micromolar range (1-10 μM) reduced Tau 1 (recognizing dephosphorylated tau at residues 189-207) and elevated pS202 tau in differentiated human neuroblastoma SH-SY5Y cells indicating that arsenic increases tau phosphorylation in neurons. Sodium arsenite elevated GSK3β kinase activity, while GSK3 inhibitors, BIO, SB216763, and lithium, reversed the Tau 1 reduction by sodium arsenite.

View Article and Find Full Text PDF

Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis.

View Article and Find Full Text PDF