Achieving multiband camouflage covering both visible and infrared regions is challenging due to the broad bandwidth and differentiated regulation demand in diverse regions. In this work, we propose a programmable microfluidic strategy that uses dye molecules in layered fluids to manipulate visible light- and infrared-semitransparent solvent to manipulate infrared light. With three primary fluid inputs, we achieve 64 chromaticity values and 8 emissivities from 0.
View Article and Find Full Text PDFFront Optoelectron
August 2022
Windows are critically important components in building envelopes that have a significant effect on the integral energy budget. For energy saving, here we propose a novel design of hydrogel-glass which consists of a layer of hydrogel and a layer of normal glass. Compared with traditional glass, the hydrogel-glass possesses a higher level of visible light transmission, stronger near-infrared light blocking, and higher mid-infrared thermal emittance.
View Article and Find Full Text PDFThe independent excitation and tuning of a dual-band graphene plasmonic wave are realized in a hybrid structure that consists of two graphene monolayers placed above and below the trapezoidal grating. Because of the transparency of graphene in the mid-infrared range, the incident light can travel through the first graphene layer to be diffracted by the grating structure and couple its energy to both graphene layers. Numerical simulations are performed using the finite difference time domain method.
View Article and Find Full Text PDF