Publications by authors named "Chunyi Zhi"

Inspired by opening soft drink cans, a one-pot method to prepare ZnO hollow spheres with double-yolk egg (DEH) architectures is developed. The bubble-assisted Ostwald ripening is proposed for the formation of these novel structures. Uniqueness of DEHs morphology led to greatly enhanced photocatalytic activity and photodetector performance.

View Article and Find Full Text PDF

Boron nitride nanotube (BNNT) films were grown on silicon/silicon dioxide (Si/SiO(2)) substrates by a catalytic chemical vapor deposition (CVD) method in a horizontal electric furnace. The effects of growth temperature and catalyst concentration on the morphology of the films and the structure of individual BNNTs were systematically investigated. The BNNT films grown at 1200 and 1300 °C consisted of a homogeneous dispersion of separate tubes in random directions with average outer diameters of ~30 and ~60 nm, respectively.

View Article and Find Full Text PDF

Pure-phase CoO octahedral nanocages were successfully fabricated by a novel simple method. The coordination etching agents play key roles in the formation of these non-spherical hollow structures. When tested as anode materials in lithium ion batteries (LIBs), these nanocages showed excellent cycling performance, good rate capability and enhanced lithium storage capacity.

View Article and Find Full Text PDF

Modern methods of in situ transmission electron microscopy (TEM) allow one to not only manipulate with a nanoscale object at the nanometer-range precision but also to get deep insights into its physical and chemical statuses. Dedicated TEM holders combining the capabilities of a conventional high-resolution TEM instrument and atomic force -, and/or scanning tunneling microscopy probes become the powerful tools in nanomaterials analysis. This progress report highlights the past, present and future of these exciting methods based on the extensive authors endeavors over the last five years.

View Article and Find Full Text PDF

The growth, structure, and properties of two-dimensional boron nitride (BN) nanostructures synthesized by a thermal chemical vapor deposition method have been systematically investigated. Most of the BN nanosheets (BNNSs) were less than 5 nm in thickness, and their purity was confirmed by X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and Raman spectroscopy. The effects of the process variables on the morphology and roughness of the coatings were studied using atomic force microscopy and scanning electron microscopy.

View Article and Find Full Text PDF

We report for the first time how boron nitride (BN) nanotubes and nanospheres may effectively be used to achieve remarkable thermal conductivity improvement of a fluid. Benefiting from high thermal conductivity and high-aspect-ratio of BN nanotubes, at a fraction of 6 vol %, the thermal conductivity of water was remarkably improved, up to ∼2.6-times.

View Article and Find Full Text PDF

The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents.

View Article and Find Full Text PDF

Multiwalled boron nitride nanotubes (BNNTs) functionalized with Fe(3)O(4) nanoparticles (NPs) were used for arsenic removal from water solutions. Sonication followed by a heating process was developed to in situ functionalize Fe(3)O(4) NPs onto a tube surface. A batch of adsorption experiments conducted at neutral pH (6.

View Article and Find Full Text PDF

Nanotubes present one of the most promising opportunities in nanotechnology with a plethora of applications in nanoelectronics, mechanical engineering, as well as in biomedical technology. Due to their structure and some physical properties, boron nitride (BN) nanotubes (BNNTs) possess several advantages over carbon nanotubes (CNTs), and they are now commercially produced and used on a large scale. The human and environmental exposure to BN nanomaterials is expected to increase in the near future, and their biological responses need to be examined.

View Article and Find Full Text PDF

We report on the synthesis, field electron emission and electric transport properties of a novel nanomaterial: ordered arrays of crystallized silicon multi-branch nanostructures. A decent field electron emission with relatively low turn-on field of 3.16 V µm⁻¹ and high field-enhancement factor of 1252 was received for the silicon nanobranches.

View Article and Find Full Text PDF

Strong and stable visible-light-emitting boron nitride nanotube (BNNT)/biomolecule nanohybrids were successfully fabricated via noncovalent functionalization of BNNTs with flavin mononucleotides (FMN). Atomic force microscopy showed excellent dispersion of the nanohybrids in aqueous solution. Infrared absorption spectroscopy revealed strong π-π stacking interactions between FMN and BNNT sidewalls.

View Article and Find Full Text PDF

As a structural analogue of the carbon nanotube (CNT), the boron nitride nanotube (BNNT) has become one of the most intriguing non-carbon nanostructures. However, up to now the pre-existing restrictions/limitations of BNNT syntheses have made the progress in their research rather modest. This work presents a new route toward the synthesis of highly pure ultrafine BNNTs based on a modified boron oxide (BO) CVD method.

View Article and Find Full Text PDF

We report a study on the optical luminescence properties and the electronic structures of boron nitride nanotubes (BNNTs). BNNTs with natural B (80% (11)B and 20% (10)B) and pure (10)B are investigated in comparison with hexagonal BN crystals using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). We find that the BNNT specimen synthesized with natural B contains more oxide impurities than that with pure (10)B, resulting in significantly different behavior in optical luminescence.

View Article and Find Full Text PDF

Inspired by rich physics and functionalities of graphenes, scientists have taken an intensive interest in two-dimensional (2D) crystals of h-BN (analogue of graphite, so-called "white" graphite). Recent calculations have predicted the exciting potentials of BN nanoribbons in spintronics due to tunable magnetic and electrical properties; however no experimental evidence has been provided since fabrication of such ribbons remains a challenge. Here, we show that few- and single-layered BN nanoribbons, mostly terminated with zigzag edges, can be produced under unwrapping multiwalled BN nanotubes through plasma etching.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca.

View Article and Find Full Text PDF

We describe the synthesis of novel nanocrystalline TiO(2) closely attached to BN nanotubes (BNNTs). The method involves the reaction of Ti(3+) with the oxidized radicals BN-H(+) to form BN-Ti(4+) bonds first, and then in situ hydrolytic conversion of the attached Ti(4+) into TiO(2). The designed reaction was carried out in a strongly acidic ethanol solution to ensure that the TiO(2) forms on the BNNT surface rather than in solution.

View Article and Find Full Text PDF

The isolation of individual boron nitride nanotubes (BNNTs) in aqueous phases has been achieved for the first time from raw materials based on the combination of peptide wrapping with a sonication procedure. Atomic force microscopic observations revealed the representative height and length of individual BNNTs. Fluorescence and infrared absorption spectra suggested the strong pi-pi interactions between BNNTs and the peptide.

View Article and Find Full Text PDF

Cubic spinel structured gallium oxynitride has been synthesized through the reaction of metallic gallium and water in the presence of organic ethylenediamine. The relative content of the mixed solvent of water and ethylenediamine controls the product morphology and structure. A novel well-defined nanoporous structure has finally been obtained, whose large surface area and peculiar surface chemistry will generate novel physical and chemical properties.

View Article and Find Full Text PDF

Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 microm were measured using three-point bending tests in an atomic force microscope.

View Article and Find Full Text PDF

Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick.

View Article and Find Full Text PDF

Noncovalent functionalization of boron nitride nanotubes (BNNTs) in aqueous solution was achieved by means of pi-stacking of an anionic perylene derivative, through which carboxylate-functionalized BNNTs were prepared for the first time. Starting from the functionalized nanotubes, an innovative methodology was designed and demonstrated for the controlled near-surface carbon doping of BNNTs. As a result of such delicate doping, novel B-C-N/BN coaxial nanotubes have been fabricated, and their p-type semiconducting behaviors were elucidated through gate-dependent transport measurements.

View Article and Find Full Text PDF

We have carried out an isotope study on the band gap and radiative transition spectra of boron nitride nanotubes (BNNTs) using both experimental and theoretical approaches. The direct band gap of BNNTs was determined at 5.38 eV, independent of the nanotube size and isotope substitution, by cathodoluminescences (CL) spectra.

View Article and Find Full Text PDF

The dispersion of nanomaterials in solutions is of primary importance for the improvement of their processability, but it also provides a way to investigate phase behavior and to assemble nanostructures in solvents. Several methods based on different interactions have been developed to disperse carbon nanotubes, whereas little development has been made for their boron nitride nanotube (BNNT) counterparts. A direct way to obtain long-range ordering may be through spontaneous nematic ordering in solutions at sufficiently high concentrations of the nanomaterial fraction.

View Article and Find Full Text PDF

Closed-shell BO(2)(-) and BO(-) anions are proposed as high-efficiency luminescence centres in boron-nitrogen systems, which makes the anions localized and leads to a radiation transition.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp9h2v6p4gvp7alfp3julfpodisrhv1qf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once