Publications by authors named "Chunyi Jiang"

Injury to the peripheral nervous system disconnects targets to the central nervous system, disrupts signal transmission, and results in functional disability. Although surgical and therapeutic treatments improve nerve regeneration, it is generally hard to achieve fully functional recovery after severe peripheral nerve injury. A better understanding of pathological changes after peripheral nerve injury helps the development of promising treatments for nerve regeneration.

View Article and Find Full Text PDF

Peripheral nerves obtain remarkable regenerative capacity while central nerves can hardly regenerate following nerve injury. Sensory neurons in the dorsal root ganglion (DRG) are widely used to decipher the dissimilarity between central and peripheral axonal regeneration as axons of DRG neurons bifurcate into the regeneration-incompetent central projections and the regeneration-competent peripheral projections. A conditioning peripheral branch injury facilitates central axonal regeneration and enables the growth and elongation of central axons.

View Article and Find Full Text PDF

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of chemotherapy with poorly understood mechanisms and few treatments. High-mobility group box 1 (HMGB1)-induced neuroinflammation is the main cause of CIPN. Here, we aimed to illustrate the role of the macrophage scavenger receptor A1 (SR-A1) in HMGB1 clearance and CIPN resolution.

View Article and Find Full Text PDF

Opioids, such as morphine, are the most potent drugs used to treat pain. Long-term use results in high tolerance to morphine. High mobility group box-1 (HMGB1) has been shown to participate in neuropathic or inflammatory pain, but its role in morphine tolerance is unclear.

View Article and Find Full Text PDF

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment.

Methods: The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting.

View Article and Find Full Text PDF

Key metabolic enzymes not only regulate Glucose, lipid, amino acid metabolism to serve the cellular energy needs, but also modulate noncanonical or nonmetabolic signaling pathway such as gene expression, cell-cycle progression, DNA repair, apoptosis and cell proliferation in regulating the pathologic progression of disease. However, the role of glycometabolism in peripheral nerve axon regeneration is little known. In this study, we investigated the expression of Pyruvate dehydrogenase E1(PDH), a key enzyme linking glycolysis and the tricarboxylic acid (TCA) cycle, with qRT-PCR and found that pyruvate dehydrogenase beta subunit (Pdhb) is up-regulated at the early stage during peripheral nerve injury.

View Article and Find Full Text PDF

Oxaliplatin is an antineoplastic agent frequently used in the treatment of gastrointestinal tumors. However, it causes dose-limiting sensorimotor neuropathy, referred to as oxaliplatin-induced peripheral neuropathy (OIPN), for which there is no effective treatment. Here, we report that the elevation of neutrophil extracellular traps (NET) is a pathologic change common to both cancer patients treated with oxaliplatin and a murine model of OIPN.

View Article and Find Full Text PDF

In contrast to the adult mammalian central nervous system (CNS), the neurons in the peripheral nervous system (PNS) can regenerate their axons. However, the underlying mechanism dictating the regeneration program after PNS injuries remains poorly understood. Combining chemical inhibitor screening with gain- and loss-of-function analyses, we identified p90 ribosomal S6 kinase 1 (RSK1) as a crucial regulator of axon regeneration in dorsal root ganglion (DRG) neurons after sciatic nerve injury (SNI).

View Article and Find Full Text PDF

Identifying novel molecules involved in axon regeneration of neurons in the peripheral nervous system (PNS) will be of benefit in obtaining a therapeutic strategy for repairing axon damage both in the PNS and the central nervous system (CNS). Metabolism and axon regeneration are tightly connected. However, the overall metabolic processes and the landscape of the metabolites in axon regeneration of PNS neurons are uncovered.

View Article and Find Full Text PDF

Background: The development of morphine tolerance is a clinical challenge for managing severe pain. Studies have shown that neuroinflammation is a critical aspect for the development of analgesic tolerance. We found that AMPK-autophagy activation could suppress neuroinflammation and improve morphine tolerance via the upregulation of suppressor of cytokine signaling 3 (SOCS3) by inhibiting the processing and maturation of microRNA-30a-5p.

View Article and Find Full Text PDF

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide; therefore, new and more specific molecules for GC are needed. Here, we found that dual specificity tyrosine phosphorylation regulated kinase 2 (DYRK2) may be a specific marker for GC. Immunohistochemistry (IHC) and statistical and bioinformatics analyses were conducted to detect DYRK2 expression in stomach tissues.

View Article and Find Full Text PDF

A major unresolved issue in treating pain is the paradoxical hyperalgesia produced by the gold-standard analgesic morphine and other opioids. Endoplasmic reticulum (ER) stress has been shown to contribute to neuropathic or inflammatory pain, but its roles in opioids-induced hyperalgesia (OIH) are elusive. Here, we provide the first direct evidence that ER stress is a significant driver of OIH.

View Article and Find Full Text PDF

Fibrinogen C domain-containing 1 (FIBCD1) is an acetyl-recognition receptor that affects the occurrence and development of certain tumors. However, the prognostic significance of FIBCD1 in hepatocellular carcinoma (HCC) remains unclear. This study aimed to explore FIBCD1 expression in HCC and to determine the prognostic value of FIBCD1 in patients with HCC.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a significant side effect of chemotherapeutics. The mechanisms of CIPN remain substantially unidentified, although inflammation-induced peripheral sensitization has been indicated as an important factor. Here, we aimed to illustrate the role of the matrix metalloproteinase (MMP)-9-related signaling pathway in the process of CIPN.

View Article and Find Full Text PDF

Chemotherapy induced peripheral neuropathy (CIPN) is a serious adverse effect of chemotherapeutics with limited pathogenetic mechanism been known. Whether microcirculatory disturbance is involved in CIPN has not been reported. Considering that tissue factor (TF) is an endogenous coagulation factor, we hypothesize CIPN may be induced by the high expression of TF in macrophages and sciatic nerve, which induces the molecular signal related to ischemia and hypoxia.

View Article and Find Full Text PDF

Objectives: Our goal was to assess the expression of histone acetyltransferase binding to origin recognition complex 1 (HBO1) in gastric cancer and the effect on prognosis for the patients.

Methods: We used quantitative reverse transcription polymerase chain reaction, Western blot, and tissue microarray immunohistochemistry to investigate the expressions of HBO1 messenger RNA (mRNA) and protein in gastric cancer tissues. Online resources, including Oncomine and Kaplan-Meier Plotter, were used to further assess the correlation between HBO1 expression and the prognosis of the patients with gastric cancer.

View Article and Find Full Text PDF

Background: Neuropathic pain is a serious clinical problem that needs to be solved urgently. ASK1 is an upstream protein of p38 and JNK which plays important roles in neuroinflammation during the induction and maintenance of chronic pain. Therefore, inhibition of ASK1 may be a novel therapeutic approach for neuropathic pain.

View Article and Find Full Text PDF

RAR plays a critical role in cancer progression and is associated with several types of human cancer. It remains unclear, however, whether it is linked to the clinicopathological parameters of colorectal cancer (CRC). We therefore determined the expression of RAR protein in patients with primary CRC and examined its relationship with clinical outcomes.

View Article and Find Full Text PDF

The development of opioid-induced analgesic tolerance is a clinical challenge in long-term use for managing chronic pain. The mechanisms of morphine tolerance are poorly understood. Mitochondria-derived reactive oxygen species (ROS) is a crucial signal inducing analgesic tolerance and pain.

View Article and Find Full Text PDF

ADAMTS-2 is a member of the ADAMTS family and is a procollagen N-proteinase. The objective of our research is to explore the prognostic significance of ADAMTS-2 in gastric carcinoma. A total of 655 samples with full clinicopathological data were investigated in this study.

View Article and Find Full Text PDF

Objectives: Fibrinogen C domain containing 1 (FIBCD1) is a newly identified acetyl group recognition receptor. The aim of this study was to evaluate the prognostic significance of FIBCD1 in gastric cancer.

Methods: This study included 706 samples, and the clinical data of all patients were recorded in detail.

View Article and Find Full Text PDF

Background: Long-term use of morphine induces analgesic tolerance, which limits its clinical efficacy. Evidence indicated morphine-evoked neuroinflammation mediated by toll-like receptor 4 (TLR4) - NOD-like receptor protein 3 (NLRP3) inflammasome was important for morphine tolerance. In our study, we investigated whether other existing alternative pathways caused morphine-induced activation of TLR4 in microglia.

View Article and Find Full Text PDF

Background: Morphine tolerance is a clinical challenge, and its pathogenesis is closely related to the neuroinflammation mediated by Toll-like receptor 4 (TLR4). In Chinese pain clinic, lidocaine is combined with morphine to treat chronic pain. We found that lidocaine sufficiently inhibited neuroinflammation induced by morphine and improved analgesic tolerance on the basis of non-affecting pain threshold.

View Article and Find Full Text PDF

Background: Gout is one of the common inflammatory arthritis which affects many people for inflicting unbearable pain. Macrophage-mediated inflammation plays an important role in gout. The uptake of monosodium urate (MSU) crystals by macrophages can lead to activation of NOD-like receptors containing a PYD 3 (NLRP3) inflammasome, thus accelerating interleukin (IL)-1β production.

View Article and Find Full Text PDF

Background: Glial activation and neuroinflammation in the spinal trigeminal nucleus (STN) play a pivotal role in the genesis and maintenance of trigeminal neuralgia (TN). Resveratrol, a natural compound from grape and red wine, has a potential anti-inflammatory effect. We hypothesized that resveratrol could significantly suppress neuroinflammation in the STN mediated by glial activation and further relieve TN.

View Article and Find Full Text PDF