Background: Passive acoustic mapping (PAM) is showing increasing application potential in monitoring ultrasound therapy by spatially resolving cavitation activity. PAM with the relative time-of-flight information leads to poor axial resolution when implemented with ultrasound diagnostic transducers. Through utilizing the absolute time-of-flight information preserved by the transmit-receive synchronization and applying the common delay-sum (DS) beamforming algorithm, PAM axial resolution can be greatly improved in the short-pulse excitation scenario, as with active ultrasound imaging.
View Article and Find Full Text PDF