Publications by authors named "Chunxiu Zang"

Nondoped organic light-emitting diodes (OLEDs) are of paramount importance for display and lighting applications owing to their advantages of facile fabrication and outstanding stability. However, nondoped OLEDs achieving extraordinary electroluminescence (EL) performance and low turn-on voltage () remain sparse. Here, three Ir(III) complexes featuring N-heterocyclic carbene (NHC) auxiliary ligands functionalized with electron-deficient aromatic sulfonyl or phosphine oxide groups are reported as promising emitters for nondoped OLEDs.

View Article and Find Full Text PDF

In conventional organic light-emitting diodes (OLEDs), current balance between electron and hole transport regions is typically achieved by leakage of the major carrier through the devices or by accumulation of the major carrier inside the devices. Both of these are known to reduce performances leading to reduction of efficiency and operation stability due to exciton-polaron annihilation, etc. We found that hole diffusion in a centimeter-scale can be achieved in a PEDOT:PSS layer via composition and interface engineering.

View Article and Find Full Text PDF

Constructing high-quality white organic light-emitting diodes (WOLEDs) remains a big challenge because of high demands on the electroluminescence (EL) performance including high efficiency, excellent spectral stability, and low roll-off simultaneously. To achieve effective energy transfer and trap-assisted recombination in the emissive layer, herein, four Ir(III) phosphors, namely, (), (), (), and (), were strategically designed via simple regulation of the substituent moiety and π conjugation of the chelated ligands. Their photophysical and EL properties were systematically investigated.

View Article and Find Full Text PDF

Here, this work presents an air-stable ultrabright inverted organic light-emitting device (OLED) by using zinc ion-chelated polyethylenimine (PEI) as electron injection layer. The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups. With these physicochemical properties, the inverted OLED shows a record-high external quantum efficiency of 10.

View Article and Find Full Text PDF

Resonance interaction between a molecular transition and a confined electromagnetic field can lead to weak or strong light-matter coupling. Considering the substantial exciton-phonon coupling in thermally activated delayed fluorescence (TADF) materials, it is thus interesting to explore whether weak light-matter coupling can be used to redistribute optical density of states and to change the rate of radiative decay. Here, we demonstrate that the emission distribution of TADF emitters can be reshaped and narrowed in a top-emitting organic light-emitting device (OLED) with a weakly coupled microcavity.

View Article and Find Full Text PDF

Retraction of 'Sublimable cationic Ir(iii) phosphor using chlorine as a counterion for high-performance monochromatic and white OLEDs' by Lei Ding et al., Chem. Commun.

View Article and Find Full Text PDF

Different from the previous design strategy, herein, a cationic Ir(iii) complex ([(ptbi)2Ir(bisq)]Cl) with a small chlorine as the counterion was synthesized, which realized the formation of a solid film via a vacuum-deposition process. The white OLED, employing it as an orange-emitting layer, achieved excellent performances with a brightness of 50 122 cd m-2, a CE of 25.5 cd A-1, an EQE of 13.

View Article and Find Full Text PDF

To develop B-O complementary-color white organic light-emitting diodes (WOLEDs) exhibiting high efficiency and low roll-off as well as color stability simultaneously, we have designed two orange iridium(III) complexes by simply controlling the position of the methoxyl group on the cyclometalated ligand. The obtained emitters mOMe-Ir-BQ and pOMe-Ir-BQ show good photophysical and electrochemical stabilities with a broadened full width at half-maximum close to 100 nm. The corresponding devices realize highly efficient electrophosphorescence with a maximum current efficiency (CE) and power efficiency (PE) of 24.

View Article and Find Full Text PDF

Nondoped electroluminescent devices offer advantages over their doped counterparts such as good reproducibility, reduced phase separation between host and guest materials, and potential of lower-cost devices. However, low luminance efficiencies and significant roll-off values are longstanding issues for nondoped devices, and a rational design strategy for the preparation of efficient phosphors is highly desired. In this work, cyclometalated Ir(III) complexes 3CzIr(mtpy), 4CzIr(mtpy), 3POIr(mtpy), and 4POIr(mtpy) bearing carbazole (Cz) or diphenylphosphoryl (PhPO) groups substituted at different positions of 1,2-diphenyl-H-benzimidazole (HPBI) were designed and synthesized.

View Article and Find Full Text PDF