Publications by authors named "Chunxi Ge"

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF
Article Synopsis
  • * A new phase-separation technology was developed to create nanofibrous poly(l-lactic acid) (PLLA) scaffolds designed to mimic the bone matrix and enhance regeneration by attaching synthetic collagen-like peptides that activate key bone cell receptors.
  • * The resulting peptide-decorated scaffolds showed significantly improved bone regeneration (7.8 times more) compared to traditional scaffolds in a study, highlighting their ability to stimulate the body’s natural healing processes.
View Article and Find Full Text PDF

Pulmonary fibrosis, especially idiopathic pulmonary fibrosis (IPF), portends significant morbidity and mortality, and current therapeutic options are suboptimal. We have previously shown that type I collagen signaling through discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase expressed by fibroblasts, is critical for the regulation of fibroblast apoptosis and progressive fibrosis. However, the downstream signaling pathways for DDR2 remain poorly defined and could also be attractive potential targets for therapy.

View Article and Find Full Text PDF

The extracellular matrix (ECM) niche plays a critical role in determining cellular behavior during bone development including the differentiation and lineage allocation of skeletal progenitor cells to chondrocytes, osteoblasts, or marrow adipocytes. As the major ECM component in mineralized tissues, collagen has instructive as well as structural roles during bone development and is required for bone cell differentiation. Cells sense their extracellular environment using specific cell surface receptors.

View Article and Find Full Text PDF

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC (CTSK CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2 CSC) that we identified in this study.

View Article and Find Full Text PDF

Skeletal progenitor: collagen interactions are critical for bone development and regeneration. Both collagen-binding integrins and discoidin domain receptors (DDR1 and DDR2) function as collagen receptors in bone. Each receptor is activated by a distinct collagen sequence; GFOGER for integrins and GVMGFO for DDRs.

View Article and Find Full Text PDF

Development of the craniofacial skeleton requires interactions between progenitor cells and the collagen-rich extracellular matrix (ECM). The mediators of these interactions are not well-defined. Mutations in the discoidin domain receptor 2 gene (), which encodes a non-integrin collagen receptor, are associated with human craniofacial abnormalities, such as midface hypoplasia and open fontanels.

View Article and Find Full Text PDF

Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear.

View Article and Find Full Text PDF

Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor kinase that, together with integrins, is required for cells to respond to the extracellular matrix. Ddr2 loss-of-function mutations in humans and mice cause severe defects in skeletal growth and development. However, the cellular functions of Ddr2 in bone are not understood.

View Article and Find Full Text PDF

Background: RUNX2, a critical transcription factor in bone development, is also expressed in prostate and breast where it has been linked to cancer progression and cancer stem cells. However, its role in normal prostate biology has not been previously examined.

Methods: Selective growth of murine prostate epithelium under non-adherent conditions was used to enrich for stem cells.

View Article and Find Full Text PDF

Objective- Vascular calcification is a common and severe complication in patients with atherosclerosis which is exacerbated by type 2 diabetes mellitus. Our laboratory recently reported that the collagen receptor discoidin domain receptor 1 (DDR1) mediates vascular calcification in atherosclerosis; however, the underlying mechanisms are unknown. During calcification, vascular smooth muscle cells transdifferentiate into osteoblast-like cells, in a process driven by the transcription factor RUNX2 (runt-related transcription factor 2).

View Article and Find Full Text PDF

A common feature of many skeletal diseases is the accumulation of marrow fat. A reciprocal relationship exists between osteogenesis and adipogenesis in bone marrow that is mediated by the relative activity of PPARγ and RUNX2 transcription factors. The ERK/MAPK pathway is an important inducer of MSC differentiation to osteoblasts and an inhibitor of adipogenesis that functions by phosphorylating RUNX2 and PPARγ.

View Article and Find Full Text PDF

Purpose Of The Review: This review will provide a timely assessment of MAP kinase actions in bone development and homeostasis with particular emphasis on transcriptional control of the osteoblast lineage.

Recent Findings: ERK and p38 MAP kinases function as transducers of signals initiated by the extracellular matrix, mechanical loading, TGF-β, BMPs and FGF2. MAPK signals may also affect and/or interact with other important pathways such as WNT and HIPPO.

View Article and Find Full Text PDF

Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells.

View Article and Find Full Text PDF

Cell-extracellular matrix (ECM) interactions play major roles in controlling progenitor cell fate and differentiation. The receptor tyrosine kinase, discoidin domain receptor 2 (DDR2), is an important mediator of interactions between cells and fibrillar collagens. DDR2 signals through both ERK1/2 and p38 MAP kinase, which stimulate osteoblast differentiation and bone formation.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ) and runt-related transcription factor 2 (RUNX2) are key regulators of mesenchymal stem cell (MSC) differentiation toward adipocytes and osteoblasts, respectively. Post-translational modifications of these factors determine their activities. Dephosphorylation of PPARγ at Ser-112 is required for its adipocytic activity, whereas phosphorylation of RUNX2 at serine 319 (Ser-319) promotes its osteoblastic activity.

View Article and Find Full Text PDF

RUNX2, an essential transcription factor for osteoblast differentiation and bone formation is activated by ERK/MAP kinase-dependent phosphorylation. However, relationship between these early events and specific epigenetic modifications of chromatin during osteoblast differentiation have not been previously examined. Here, we explore these relationships using chromatin immunoprecipitation (ChIP) to detect chromatin modifications in RUNX2-binding regions of Bglap2 and Ibsp.

View Article and Find Full Text PDF

In many skeletal diseases, including osteoporosis and disuse osteopenia, defective osteoblast differentiation is associated with increased marrow adipogenesis. The relative activity of two transcription factors, RUNX2 and PPARγ, controls whether a mesenchymal cell will differentiate into an osteoblast or adipocyte. Herein we show that the ERK/MAP kinase pathway, an important mediator of mechanical and hormonal signals in bone, stimulates osteoblastogenesis and inhibits adipogenesis via phosphorylation of RUNX2 and PPARγ.

View Article and Find Full Text PDF

Bone can adapt its structure in response to mechanical stimuli. At the cellular level, this involves changes in chromatin organization, gene expression, and differentiation, but the underlying mechanisms are poorly understood. Here we report on the involvement of RUNX2, a bone-related transcription factor, in this process.

View Article and Find Full Text PDF

RUNX2, a key transcription factor for osteoblast differentiation, is regulated by ERK1/2 and p38 MAP kinase-mediated phosphorylation. However, the specific contribution of each kinase to RUNX2-dependent transcription is not known. Here we investigate ERK and p38 regulation of RUNX2 using a unique P-RUNX2-specific antibody.

View Article and Find Full Text PDF

Angiogenesis and bone formation are intimately related processes. Hypoxia during early bone development stabilizes hypoxia-inducible factor-1α (HIF-1α) and increases angiogenic signals including vascular endothelial growth factor (VEGF). Furthermore, stabilization of HIF-1α by genetic or chemical means stimulates bone formation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionntdovjc71kppmpdq3nt87el9u5m7b71t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once