Publications by authors named "Chunwu Zhang"

The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common chronic inflammatory disease that leads to disability and death. Existing therapeutic agents often require frequent use, which can lead to drug resistance and long-term side effects. Polyphenols have anti-inflammatory and antioxidant potential.

View Article and Find Full Text PDF

Chronic inflammatory diseases such as diabetic wounds and osteoarthritis are significant threats to human health. Failure to scavenge longstanding excessive reactive oxygen species (ROS) is an important cause of chronic inflammatory diseases, yet existing treatments that provide long-lasting therapeutic effects are limited. Here, procyanidin capsules were synthesized in a simple one-step way using calcium carbonate as a template.

View Article and Find Full Text PDF

Given the challenge of multidrug resistance in antibiotics, non-antibiotic-dependent antibacterial strategies show promise for anti-infective therapy. VC MXene-based nanomaterials have demonstrated strong biocompatibility and photothermal conversion efficiency (PCE) for photothermal therapy (PTT). However, the limitation of VC MXene's laser irradiation to the near-infrared region I (NIR-I) restricts tissue penetration, making it difficult to achieve complete bacterial eradication with single-effect therapeutic strategies.

View Article and Find Full Text PDF

Objective: To observe the effect of electroacupuncture (EA) stimulating Zusanli (ST36), Sanyinjiao (SP6) on inhibition of osteoclastogenesis and the role of the adenosine A2A receptor (A2AR) and the p38α Mitogen-Activated Protein Kinase (MAPK) signaling pathway in mediating this effect.

Methods: Mice with collagen induced arthritis (CIA) received different treatments. Immunohistochemistry and western blotting were used to determine the levels of multiple signaling molecules in these joints [receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL), receptor activator of NF-κB (RANK), tumor necrosis factor receptor associated factor 6 (TRAF6), p38α, NF-κB, and nuclear factor of activated T cells C1 (NFATc1)].

View Article and Find Full Text PDF

Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear.

View Article and Find Full Text PDF

Large size bone defects affect human health and remain a worldwide health problem that needs to be solved immediately. 3D printing technology has attracted substantial attention for preparing penetrable multifunctional scaffolds to promote bone reconditioning and regeneration. Inspired by the spongy structure of natural bone, novel porous degradable scaffolds have been printed using polymerization of lactide and caprolactone (PLCL) and bioactive glass 45S5 (BG), and polydopamine (PDA) was used to decorate the PLCL/BG scaffolds.

View Article and Find Full Text PDF

Irreversible destruction of joints is the hallmark of rheumatoid arthritis (RA). Osteoclasts are the only bone-resorbing cells and play an important role in joint rebuilding. BML-111 (5(S),6(R),7-trihydroxyheptanoic acid methyl ester, C H O ) is a synthetic lipoxin A4 agonist with antioxidant and anti-inflammatory properties.

View Article and Find Full Text PDF

An ideal bone regenerative scaffold is expected to possess architectural characteristics that mimic the bone tissue, osteoconductive properties, and osteoinductive functionality. Key challenges to creating a scaffold with these ideal characteristics simultaneously are the selection of appropriate processing methods and biocompatible materials. Herein, human hair keratin is proposed as an organic binder for the simultaneous incorporation of bone's major inorganic component, hydroxyapatite and bone's growth factor, recombinant human bone morphogenetic protein 2 (rhBMP2) to enable both osteoconductive and osteoinductive characteristics in the creation of bone scaffolds.

View Article and Find Full Text PDF

Gout is a common inflammatory arthritis, and its exact pathogenesis remains unclear. Multiple studies have demonstrated that genetic factors play important roles in the development of gout. This study aims to investigate the genetic basis of gout in a three-generation pedigree of affected individuals.

View Article and Find Full Text PDF

The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes.

View Article and Find Full Text PDF

Finding a suitable biomaterial for scaffolding in cartilage tissue engineering has proved to be far from trivial. Nonetheless, it is clear that biomimetic approaches based on gelatin (Gel) and hyaluronic acid (HA) have particular promise. Herein, a set of formulations consisting of photo-polymerizable Gel; photo-polymerizable HA, and allogenic decellularized cartilage matrix (DCM), is synthesized and characterized.

View Article and Find Full Text PDF

Xenogeneic bones are potential templates for bone regeneration. In this study, decellularized porcine bone powder with attenuated immunogenicity was incorporated into a photocurable hydrogel, gelatin methacryloyl (GelMA), to obtain scaffolds with good mechanical properties for bone tissue engineering. The decellularized bone powder (DCB)-GelMA hybrid scaffolds had higher compressive strength and stiffness values when the DCB content was increased.

View Article and Find Full Text PDF

A film with an elaborate microstructure and multifunctions is urgently needed in wound healing. Here, we present a multiactive encapsulated inverse opal film with a monitorable delivery system for chronic wound healing. The inverse opal film is prepared by using poly(lactic--glycolic acid) to negatively replicate a colloidal crystal template, which presents a high specific surface area and interconnected nanopores.

View Article and Find Full Text PDF

The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance.

View Article and Find Full Text PDF

Mitochondrial dysfunction leads to osteoarthritis (OA) and disc degeneration. Hypoxia inducible factor-1α (HIF-1α) mediated mitophagy has a protective role in several diseases. However, the underlying mechanism of HIF-1α mediated mitophagy in OA remains largely unknown.

View Article and Find Full Text PDF

Gout is a common type of inflammatory arthritis that is clinically and genetically heterogeneous. The genetic aetiology remains unclear, and mainly relies on previous genome‑wide association studies focused on sporadic cases. The present study aimed to identify the genetic basis of gout in three families using whole‑exome sequencing (WES).

View Article and Find Full Text PDF

Gout is a common inflammatory arthritis triggered by monosodium urate deposition after longstanding hyperuricemia. In the general community, the disease is largely polygenic in genetic architecture, with many polymorphisms having been identified in gout or urate-associated traits. In a small proportion of cases, rare high penetrant mutations associated with monogenic segregation of the disease in families have been demonstrated to be disease causative.

View Article and Find Full Text PDF

The present study aimed to explore the potential of combined treatment with mesenchymal stem cells (MSCs) and danshen for angiogenesis and bone regeneration in a rabbit model of avascular necrosis of femoral head (ANFH). A rabbit model of ANFH was established using the Shwartzman reaction with methylprednisolone and Escherichia coli endotoxin injection. Magnetic resonance imaging (MRI) and histopathological examination were used to evaluate the rabbit model of ANFH.

View Article and Find Full Text PDF

Background: This study was to investigate the role of adenosine A2A receptors (A2AR) in inhibiting the effect of electroacupuncture (EA) on osteoclastogenesis in collagen-induced arthritis (CIA).

Methods: Wistar rats were divided into four groups: sham-control group, CIA-control group, CIA-EA group, and CIA-EA-SCH58261 (A2AR antagonist) group. We detected tumor necrosis factor- (TNF-), nuclear transcription factor-B (NF-B), receptor activator of NF-B ligand (RANKL), protein kinase A (PKA), and extracellular regulatory protein kinase 1/2 (ERK1/2) in peripheral blood by ELISA.

View Article and Find Full Text PDF

The imbalance between angiogenic inducers and inhibitors appears to be a critical factor in tumour pathogenesis. Angiogenesis serves a key role in the occurrence, invasion and metastasis of tumours. Macrophages are a major cellular component of human and rodent tumours, where they are usually termed tumour‑associated macrophages (TAMs).

View Article and Find Full Text PDF

Aims: Autophagy has been regarded as a promising therapeutic target for spinal cord injury (SCI). Erythropoietin (EPO) has been demonstrated to exhibit neuroprotective effects in the central nervous system (CNS); however, the molecular mechanisms of its protection against SCI remain unknown. This study aims to investigate whether the neuroprotective effects of EPO on SCI are mediated by autophagy via AMP-activated protein kinase (AMPK) signaling pathways.

View Article and Find Full Text PDF

Objective: To find out the clinical indicators related to prognosis in patients with acute mushroom poisoning, and approach its correlation with prognosis.

Methods: Clinical data of patients with mushroom poisoning admitted to the First Hospital of China Medical University, the Ninth People's Hospital of Shenyang, Xiuyan Central People's Hospital, and Fushun Central Hospital from August 2015 to August 2017 were retrospectively analyzed. The biochemical indicators within 24 hours after admission, sequential organ failure assessment (SOFA) score, model for end-stage liver disease (MELD) score, whether plasmapheresis (PE) was carried out or not and 28-day prognosis of patients were collected.

View Article and Find Full Text PDF