Curr Cancer Drug Targets
October 2024
A ring-stabilized endogenous non-coding RNA is called circular RNA (circRNA). Intercellular communication is mediated by exosomes, and circRNA is enriched and stabilized in exosomes. It has recently been demonstrated that cancer cells and tissues exhibit abnormal expression of exosomal circRNAs.
View Article and Find Full Text PDFPancreatic cancer is a prevalent malignant tumor with rising medication resistance and mortality. Due to a dearth of specific and trustworthy biomarkers and therapeutic targets, pancreatic cancer early detection and treatment are still not at their best. Exosomal LncRNAs have been found to be plentiful and persistent within exosomes, and they are capable of functioning whether the exosomes are traveling to close or distant cells.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2024
2D MgI has a large phonon band gap and strong coupling of optical and acoustic phonons, and it is difficult to accurately predict thermal conductivity by considering only three-phonon scattering. Thus, in this study, the effect of four-phonon scattering on the thermal conductivity of a 2D MgI lattice was investigated using first-principles calculations combined with Boltzmann transport theory. The results show that with increasing temperature, four-phonon scattering induces an increase in the scattering of phonons at the optical and acoustic phonon coupling (2 THz), as well as in the vicinity of the optical phonon branch (4.
View Article and Find Full Text PDFColorectal cancer (CRC) is currently the third most common malignancy world-wide, with an increasing mortality rate and treatment resistance. Due to the lack of effective biomarkers and therapeutic targets, the early diagnosis and treatment of colorectal cancer re-main suboptimal. Circular RNAs (circRNAs) are a novel class of non-coding RNAs with co-valent closed-loop structures that are well stabilized and conserved and are involved in multi-ple pathological conditions in humans.
View Article and Find Full Text PDFThin wafers and thin wires are beneficial to the photovoltaic industry for reducing costs, increasing efficiency, and reducing the cost of electricity generation. It is a development trend in solar silicon wafer cutting. Thin wire cutting reduces the kerf between silicon wafers to less than 50 μm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
The urgent need for CO capture and hydrogen energy has attracted great attention owing to greenhouse gas emissions and global warming problems. Efficient CO capture and H purification with membrane technology will reduce greenhouse gas emissions and help reach a carbon-neutral society. Here, 4-sulfocalix[4]arene (SC), which has an intrinsic cavity, was embedded into the Matrimid membrane as a molecular gatekeeper for CO capture and H purification.
View Article and Find Full Text PDFUnlabelled: As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus].
View Article and Find Full Text PDFIt has been proven that structural damage can be successfully identified using trendlines of structural acceleration responses. In previous numerical and experimental studies, the Savitzky-Golay filter and moving average filter were adjusted to determine suitable trendlines and locate structural damage in a simply supported bridge. In this study, the quadratic regression technique was studied and employed to calculate the trendlines of the bridge acceleration responses.
View Article and Find Full Text PDFIn this paper, the influence of different fiber materials on the dynamic splitting mechanical properties of concrete was investigated. Brazil disc dynamic splitting tests were conducted on plain concrete, palm fiber-reinforced concrete, and steel fiber-reinforced concrete specimens using a split Hopkinson pressure bar (SHPB) test device with a 100 mm diameter and a V2512 high-speed digital camera. The Digital Image Correlation (DIC) technique was used to analyze the fracture process and crack propagation behavior of different fiber-reinforced concrete specimens and obtain their dynamic tensile properties and energy dissipation.
View Article and Find Full Text PDFPath-tracking and lane-keeping tasks are critical to guarantee safety and navigation performance considerations for deploying autonomous cars. This paper presents a novel control framework for the path-tracking control of high-speed autonomous cars with structured uncertainties. This study introduces a nonlinear adaptive control system based on a fractional-order terminal sliding mode system while incorporating a novel Gaussian Nonsingleton type-3 fuzzy system (FOTSM-NT3FS).
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is characterized by progressive and irreversible airflow obstruction with abnormal lung function. Because its pathogenesis involves multiple aspects of oxidative stress, immunity and inflammation, apoptosis, airway and lung repair and destruction, the clinical approach to COPD treatment is not further updated. Therefore, it is crucial to discover a new means of COPD diagnosis and treatment.
View Article and Find Full Text PDFRe-entrant auxetics offer the potential to address lightweight challenges while exhibiting superior impact resistance, energy absorption capacity, and a synclastic curvature deformation mechanism for a wide range of engineering applications. This paper presents a systematic numerical study on the compressive and flexural behaviour of re-entrant honeycomb and 3D re-entrant lattice using the finite element method implemented with ABAQUS/Explicit, in comparison with that of regular hexagonal honeycomb. The finite element model was validated with experimental data obtained from the literature, followed by a mesh size sensitivity analysis performed to determine the optimal element size.
View Article and Find Full Text PDFA tunable dual broadband switchable terahertz absorber based on vanadium dioxide and graphene is proposed. The tunability of graphene and the phase transition properties of vanadium dioxide are used to switch broadband absorption between low-frequency and high-frequency, as well as the absorption rate tuning function. The simulation results indicate that when vanadium dioxide is in the insulating phase and the graphene Fermi energy is 0.
View Article and Find Full Text PDFIn this research, a protective concrete-filled steel plate composite wall (PSC) is developed, consisting of a core concrete-filled bilateral steel plate composite shear wall and two lateral replaceable surface steel plates with energy-absorbing layers. The PSC wall is characterised by high in-plane seismic performance as well as out-of-plane impact performance. Therefore, it could be employed primarily in high-rise constructions, civil defence initiatives, and buildings with stringent structural safety criteria.
View Article and Find Full Text PDFGeometric constraint algorithms can solve phase ambiguity for fringe projection profilometry (FPP). However, they either require multiple cameras or suffer from a small measurement depth range. To overcome these limitations, this Letter proposes an algorithm combining orthogonal fringe projection and geometric constraints.
View Article and Find Full Text PDFA compact temperature-refractive index (RI) flat photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) is presented in this paper. Sensing of temperature and RI takes place in the - and - polarization, respectively, to avoid the sensing crossover, eliminating the need for matrix calculation. Simultaneous detection of dual parameters can be implemented by monitoring the loss spectrum of core modes in two polarizations.
View Article and Find Full Text PDFA functionally tunable and absorption-tunable terahertz (THz) metamaterial absorber based on vanadium dioxide (VO) and graphene is proposed and verified numerically. Based on phase transition properties of VO and tunability of graphene, the switching performance between ultra-broadband and narrow-band near-perfect absorption can be achieved. We simulate and analyze the characteristics of the constructed model by finite element analysis.
View Article and Find Full Text PDFAfter wars, some unexploded bombs remained underground, and these faulty bombs seriously threaten the safety of people. The ability to accurately identify targets is crucial for subsequent mining work. A deep learning algorithm is used to recognize targets, which significantly improves recognition accuracy compared with the traditional recognition algorithm for measuring the magnetic moment of the target and the included geomagnetism angle.
View Article and Find Full Text PDFIn this study, a novel approach is proposed for glucose regulation in type-I diabetes patients. Unlike most studies, the glucose-insulin metabolism is considered to be uncertain. A new approach on the basis of the Immersion and Invariance (I&I) theorem is presented to derive the adaptation rules for the unknown parameters.
View Article and Find Full Text PDFWith loading of different shapes of nanoparticles, the solidification speed can be changed which was scrutinized in current work. Although the nanoparticles dispersion can decline the heat capacity, the conduction mode can be improved with such technique and changing the styles of nano-powders can alter the strength of conduction. The velocity terms were neglected in freezing, thus, the main equations include two equations with unsteady form for scalars of solid fraction and temperature.
View Article and Find Full Text PDFIn this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.
View Article and Find Full Text PDFPhase unwrapping is an essential procedure for fringe projection profilometry (FPP). To improve measurement efficiency and reduce phase unwrapping errors (PUEs) in dynamic measurement, a phase unwrapping algorithm based on phase edge tracking is proposed, which unwraps the current wrapped phase map with the aid of the previously unwrapped one. The phase edges are accurately tracked and their trajectories are used to divide the phase map into several regions, each of which is unwrapped either temporally or spatially according to its properties.
View Article and Find Full Text PDFPerovskite materials have driven tremendous advances in constructing electronic devices owing to their low cost, facile synthesis, outstanding electric and optoelectronic properties, flexible dimensionality engineering, and so on. Particularly, emerging nonvolatile memory devices (eNVMs) based on perovskites give birth to numerous traditional paradigm terminators in the fields of storage and computation. Despite significant exploration efforts being devoted to perovskite-based high-density storage and neuromorphic electronic devices, research studies on materials' dimensionality that has dominant effects on perovskite electronics' performances are paid little attention; therefore, a review from the point of view of structural morphologies of perovskites is essential for constructing perovskite-based devices.
View Article and Find Full Text PDFFront Neuroinform
September 2021
Image interpolation is an essential process for image processing and computer graphics in wide applications to medical imaging. For image interpolation used in medical diagnosis, the two-dimensional (2D) to three-dimensional (3D) transformation can significantly reduce human error, leading to better decisions. This research proposes the type-2 fuzzy neural networks method which is a hybrid of the fuzzy logic and neural networks as well as recurrent type-2 fuzzy neural networks (RT2FNNs) for advancing a novel 2D to 3D strategy.
View Article and Find Full Text PDF