Publications by authors named "Chunwang Zhang"

Single Recovery Roadway (SRR) is a novel retraction technology in the non-pillars mining innovation system. In previous support withdrawing, single recovery roadway was usually replaced by a dual-recovery roadway or cut the coal wall before the support. This study is set against the background of the longwall panel at Duanshi Coal Mine, where a mechanical model based on the stress characteristics of a composite cantilever beam was constructed to analyze the failure of the main roof in a single recovery roadway.

View Article and Find Full Text PDF

In the geothermal development of hot dry rock (HDR), both the drilling of the wellbore and the heat exchange of the heat reservoir involve the effects of different cold and hot conditions on the high-temperature rock mass. The testing machine for rock mechanics was used to conduct a uniaxial compression test and carry out micro testing on the treated samples; furthermore, with the help of scanning electron microscopy the fracture mechanism of granite subjected to different temperatures and cooling methods was studied. The results show: (1) With the gradual increase in temperature, the compressive strength of granite under the two cooling methods gradually decreases.

View Article and Find Full Text PDF

Antioxidant intervention is considered to inhibit reactive oxygen species (ROS) and alleviate hyperglycemia. Paradoxically, moderate exercise can produce ROS to improve diabetes. The exact redox mechanism of these two different approaches remains largely unclear.

View Article and Find Full Text PDF

Background: Accumulating evidence has demonstrated that bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) can be used effectively to transfer drugs and biomolecules to target lesions. Meanwhile, BMSCs have been reported to be beneficial in the treatment of rheumatoid arthritis (RA). In this study, we employ gain- and loss-of-function experiments to determine how BMSCs-derived EVs alleviate RA and

Methods: We isolated EVs from BMSCs and characterized them by transmission electron microscopy and western blot analysis.

View Article and Find Full Text PDF

Early treatment can prevent the occurrence of diabetes; however, there are few pharmacological treatment strategies to date. The liver is a major metabolic organ, and hepatic glucose homeostasis is dysregulated in type 1 and type 2 diabetes mellitus. However, the potential of specifically targeting the liver to prevent diabetes has not been fully exploited.

View Article and Find Full Text PDF

Emerging evidence has pointed out the importance of long non-coding RNAs (lncRNAs) in multiple diseases, the knowledge of rheumatoid arthritis (RA)-associated lncRNAs remains limited. In this present study, we aimed to elucidate the mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) from peripheral blood monouclear cell (PBMC)-derived exosomes (exos) on RA development by modulating the microRNA-23a (miR-23a)/murine double minute-2 (MDM2)/Sirtuin 6 (SIRT6) axis. RA was modeled by collagen induction in mice and by exposing fibroblast-like synoviocytes (FLSs) to lipopolysaccharide.

View Article and Find Full Text PDF

Fibroblast-derived exosomes have been reported to transfer microRNAs to recipient cells, where they regulate target gene expression, which is of interest for understanding the basic biology of inflammation, tissue homeostasis, and development of therapeutic approaches. Initial microarray-based analysis carried out in this study identified the rheumatoid arthritis (RA)-related differentially expressed gene pyruvate dehydrogenase kinase 4 (PDK4). Subsequently, the upstream regulatory microRNA-106b (miR-106b) of PDK4 was predicted with bioinformatic analyses.

View Article and Find Full Text PDF

Recent advances in Nanomedicine provide promising disease treatment through improved drug delivery efficiency, but clinical applications have encountered difficulties, largely due to the majority of injected nanoparticle is sequestered in liver. In contrast, liver cells seem to be a perfect target for nanoparticles. Here we generated a new formula of liposome encapsulated Nano-MitoPBN as a liver mitochondrial-targeting free radical scavenger.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammation mediated by autoimmune responses. MEG3, a kind of long noncoding RNA (lncRNA), participates in cell proliferation in cancer tissues. However, the correlation between MEG3 and RA is yet unclear.

View Article and Find Full Text PDF

Background: As a type of chronic autoimmune joint disease, rheumatoid arthritis (RA) is a disorder, characterized by a variety of physical symptoms as well as RA fibroblast-like synoviocyte (RA-FLS) proliferation. More recently, long non-coding RNAs (lncRNAs) have been implicated in the progression of various diseases including the progression of RA. Hence, the aim of the current study was to investigate the role by which the lncRNA, plasmacytoma variant translocation 1 (PVT1), influences RA-FLSs and its ability to modulate the methylation of .

View Article and Find Full Text PDF

We aimed to investigate the regulation of circular RNAs in lipopolysaccharide (LPS)-treated chondrocytes isolated from SD rat. In this study, we analyzed how circFADS2 was regulated in LPS-treated chondrocytes and isolates from Rheumatoid arthritis (RA) patients and found that circFADS2 and mTOR were highly expressed whereas miR-498 expression was significantly reduced. We then silenced circFADS2 in LPS-treated chondrocytes; this resulted in a declined expression of type II collagen, but an increase in the expression of MMP-13, COX-2, and IL-6.

View Article and Find Full Text PDF

Fibroblast-like synoviocytes (FLSs) participate in the pathogenesis of rheumatoid arthritis (RA). Emerging evidence has highlighted the role of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and its potential involvement in RA. In this study, we test the hypothesis that the MALAT1 might inhibit proliferation and inflammatory response of FLSs in RA.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a common chronic autoimmune joint disease characteristic of elevated proliferation and infiltration of fibroblast-like synoviocytes (FLS). Here, we aimed to explore the mechanisms of the Tanshinone IIA (Tan IIA)-induced apoptosis of FLS from patients with RA (termed RAFLS). Cell Counting Kit-8 (CCK-8) assay and Annexin V staining revealed that RAFLS viability decreased and apoptosis increased after Tan IIA treatment.

View Article and Find Full Text PDF

Peripheral nerve injury can result in the decreased quality of life and bring us economic burden on society and individuals. Wallerian degeneration (WD) is critical for nerve degeneration and regeneration, but the mechanisms of WD are still elusive. Here, we report the effect of Toll-like receptor 4 (TLR4) on cultured Schwann cells (SCs) in vitro.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is the most common inflammatory arthritis and is a major cause of disability. The nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway has been reported to be involved in the pathogenesis of RA with unclear mechanisms. Therefore, this study aims to explore the effect of NF-κB pathway on proliferation, apoptosis, and angiogenesis of human fibroblast-like synovial cells (HFLS) in RA.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a inflammatory disease that characterized with the destruction of synovial joint, which could induce disability. Inflammatory response mediated the RA. It has been reported that MiR-128-3p is significantly increased in RA, while the potential role was still unclear.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease of the joints characterized by synovial hyperplasia and chronic inflammation. Fibroblast-like synoviocytes (FLS) play a central role in RA initiation, progression, and perpetuation. Prior studies showed that sirtuin 1 (SIRT1), a deacetylase participating in a broad range of transcriptional and metabolic regulations, may impact cell proliferation and inflammatory responses.

View Article and Find Full Text PDF