Early diagnosis of liver cancer and appropriate treatment options are critical for obtaining a good prognosis. However, due to technical limitations, it is difficult to make an early and accurate diagnosis of liver cancer, and the traditional imaging model is relatively simple. Therefore, we synthesized multifunctional diagnostic/therapeutic nanoparticles, UMFNPs/Ce6@MBs, loaded with ultra-small manganese ferrite nanoparticles (UMFNPs) and chlorin e6 (Ce6).
View Article and Find Full Text PDFTwo-photon lithography has revolutionized multi-photon 3D laser printing, enabling precise fabrication of micro- and nanoscale structures. Despite many advancements, challenges still persist, particularly in biofunctionalization of 3D microstructures. This study introduces a novel approach combining two-photon lithography with scanning probe lithography for post-functionalization of 3D microstructures overcoming limitations in achieving spatially controlled biomolecule distribution.
View Article and Find Full Text PDFBackground And Aims: The diagnostic standard of coronary artery disease (CAD) is coronary angiography (CAG). Since CAG is an invasive procedure underscores the need for identifying non-invasive, effective, and innovative biomarkers. Our study aimed to retrospectively analyze hematological markers for predicting the severity of CAD.
View Article and Find Full Text PDFSensing small biomolecules in biofluids remains challenging for many optical chemosensors based on supramolecular host-guest interactions due to adverse interplays with salts, proteins, and other biofluid components. Instead of following the established strategy of developing alternative synthetic binders with improved affinities and selectivity, we report a molecular engineering approach that addresses this biofluid challenge. Here we introduce a cucurbit[8]uril-based rotaxane chemosensor feasible for sensing the health-relevant biomarker tryptophan at physiologically relevant concentrations, even in protein- and lipid-containing human blood serum and urine.
View Article and Find Full Text PDFExtracellular vesicles (EVs) contain various bioactive molecules such as DNA, RNA, and proteins, and play a key role in the regulation of cancer progression. Furthermore, cancer-associated EVs carry specific biomarkers and can be used in liquid biopsy for cancer detection. However, it is still technically challenging and time consuming to detect or isolate cancer-associated EVs from complex biofluids (e.
View Article and Find Full Text PDFThe curvature of lipid membranes plays a key role in many relevant biological processes such as membrane trafficking, vesicular budding and host-virus interactions. In vitro studies on the membrane curvature of simplified biomimetic models in the nanometer range are challenging, due to their complicated nanofabrication processes. In this work, we propose a simple and low-cost platform for curvature sensitive protein screening, prepared through scanning probe lithography (SPL) methods, where lipid bilayer patches of different compositions can be multiplexed onto substrate areas with tailored local curvature.
View Article and Find Full Text PDFAs a drug carrier, polyrotaxane (PR) has been used for targeted delivery and sustained release of drugs, whereas silver sulfadiazine (SD-Ag) is an emerging antibiotic agent. PR was synthesized by the use of α-cyclodextrin (CD) and poly(ethylene glycol) (PEG), and a specific antibacterial material (PR-(SD-Ag)) was then prepared by loading SD-Ag onto PR with different mass ratios. The loading capacity and the encapsulation efficiency were 90% at a mass ratio of 1:1 of PR and SD-Ag.
View Article and Find Full Text PDFInfections associated with biomedical implants and devices pose a serious clinical challenge in hospitals worldwide. Antimicrobial peptides (AMPs) have become a great prospect to inhibit this type of infection due to their broad-spectrum antimicrobial activity and low cytotoxicity. However, it is still a challenge to apply AMPs on the biomaterial surface as the activity of AMPs is sensitive to salt or enzyme.
View Article and Find Full Text PDFFor patients with liver failure, bilirubin (BR) is one of the endogenous toxins in their blood. Although blood purification can remove the bilirubin from the body in clinics, the detoxification system needs to be improved, and the cost needs to be decreased. In the present study, we developed a recyclable model surface that can strongly remove bilirubin.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are a broad prospect for clinical application against bacterial infections of biomaterials. However, a bottleneck exists as there is a lack of simple technology to prepare AMPs on biomaterials with sufficient activity, as the activity of AMP is dependent on the correct orientation on the biomaterial. In the present study, based on the conventional AMP (Tet213: KRWWKWWRRC) and surface binding peptide (SKHKGGKHKGGKHKG), we designed an Anchor-AMP that could be directly assembled onto the surface of the biomaterial and also showed excellent antimicrobial activity.
View Article and Find Full Text PDF