Background: A link between rheumatoid arthritis (RA) and periodontitis (PD) has been established. However, their causal relationship remains unclear and the effect of different serotypes of RA on the PD development has not been investigated. This study aims to elucidate the causal association between PD and different serotypes of RA using Mendelian randomization (MR).
View Article and Find Full Text PDFIntroduction: Despite decades of research, systemic autoimmune diseases (SADs) continue to be a major global health concern and the etiology of these diseases is still not clear. To date, with the development of high-throughput techniques, increasing evidence indicated a key role of oral microbiome in the pathogenesis of SADs, and the alterations of oral microbiome may contribute to the disease emergence or evolution. This review is to present the latest knowledge on the relationship between the oral microbiome and SADs, focusing on the multiomics data generated from a large set of samples.
View Article and Find Full Text PDFRecently, strategies that can target the underlying mechanisms of phenotype change to modulate the macrophage immune response from the standpoint of biological science have attracted increasing attention in the field of biomaterials. In this study, we printed a molybdenum-containing bioactive glass ceramic (Mo-BGC) scaffold as an immunomodulatory material. In a clinically relevant critical-size periodontal defect model, the defect-matched scaffold featured robust immunomodulatory activity, enabling long-term stable macrophage modulation and leading to enhanced regeneration of multiple periodontal tissues in canines.
View Article and Find Full Text PDFObjectives: Previously, we found that by regulating T helper (Th) cell polarization, calcitriol intervention inhibited lipopolysaccharide (LPS)-induced alveolar bone loss in an animal periodontitis model, but the underlying cellular events remain unknown.
Materials And Methods: In this study, mouse Th cells were incubated in an inflammatory environment in the presence of dendritic cells (DCs) and LPS. Then, the potential of the Th cells to undergo Th2/Th17 polarization, the RANKL expression of the polarized Th cells and the subsequent influences of the polarized Th cells on RAW264.
Objective: The aim of this study was to determine how the removal of non-impacted third molars (N-M3s) affects the periodontal status of neighboring second molars (M2s).
Subjects And Methods: The periodontal condition of M2s for which the neighboring N-M3s were removed (more than 6 months previously) and those with intact N-M3s was analyzed in a cross-sectional observation study. In an additional case series, periodontal changes in M2s in response to adjacent N-M3 removal were observed during a 6-month follow-up period.
This study aimed to investigate the relationship between inflammation-related T-helper cell polarization and the receptor activator for nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio, which is associated with bone resorption or remodeling of chronic periodontitis patients. Gingival crevicular fluid (GCF) and gingival tissues were obtained from periodontally healthy individuals (PH group) and chronic periodontitis patients (CP group). The GCF levels of IFN-γ, IL-4, IL-17, and IL-10 linked to T-helper cell polarization toward the Th1, Th2, Th17, and Treg phenotypes, respectively, were determined by ELISA.
View Article and Find Full Text PDFAlthough titanium implants have been applied in dental clinics to replace lost teeth and to restore masticatory function for decades, strategies to design the surface of the transmucosal sites of implants to achieve ideal and predictable biological sealing following implantation remain to be optimized. In this study, we hypothesized that gingival epithelial cell (GEC) adhesion and new tissue attachment to titanium sheets/implants could be promoted by the release of plasmid pLAMA3-CM (encoding a motif of the C-terminal globular domain of LAMA3) from a titanium surface. To test this hypothesis, a chitosan/collagen (Chi/Col) coating was immobilized on the surfaces of titanium substrates with nanotube topography (NT-Ti) through cathodic electrophoretic deposition; it was found that pLAMA3-CM could be released from the coating in a highly sustained manner.
View Article and Find Full Text PDFBackground: Although the immunomodulatory properties of calcitriol in bone metabolism have been documented for decades, its therapeutic role in the management of periodontitis remains largely unexplored. In this study, we hypothesized that calcitriol suppresses lipopolysaccharide (LPS)-induced alveolar bone loss by regulating T helper (Th) cell subset polarization.
Methods: To test this hypothesis, we determined the effect of calcitriol intervention on the development of LPS-induced periodontitis in rats in terms of bone loss (micro-CT analysis), local inflammatory infiltration levels, the number of osteoclasts (hematoxylin and eosin staining) and the level of osteoclastogenesis (tartrate-resistant acid phosphatase method).
Objective: Although accumulating evidence indicates that macrophages are central players in the destructive and reparative phases of periodontal disease, their polarization states at different stages of periodontal inflammation remain unclear.
Methods: We collected gingival biopsies from patients with chronic periodontitis (P group), gingivitis (G group), or periodontally healthy individuals (H group). Polarized macrophages were identified through immunofluorescence.
J Tissue Eng Regen Med
April 2018
The use of stem cell-derived sheets has become increasingly common in a wide variety of biomedical applications. Although substantial evidence has demonstrated that human platelet lysate (PL) can be used for therapeutic cell expansion, either as a substitute for or as a supplement to xenogeneic fetal bovine serum (FBS), its impact on cell sheet production remains largely unexplored. In this study, we manufactured periodontal ligament stem cell (PDLSC) sheets in vitro by incubating PDLSCs in sheet-induction media supplemented with various ratios of PL and FBS, i.
View Article and Find Full Text PDFSystemic infusion of bone marrow-derived mesenchymal stem cells (BMSCs) has become a promising strategy for disease treatment and tissue regeneration. Strategies to enhance the efficiency of BMSC cell therapy are crucial to promote its clinical application. Here, we aimed to improve BMSC cell therapy by inhibiting the BMSC-induced coagulation reaction.
View Article and Find Full Text PDFIn this study, we extensively screened the in vitro and in vivo effects of PDLSCs following short-term inflammatory and/or hypoxic pretreatments. We found that the 24-h hypoxic pretreatment of PDLSCs significantly enhanced cell migration and improved cell surface CXCR4 expression. In addition, hypoxia-pretreated PDLSCs exhibited improved cell colony formation and proliferation.
View Article and Find Full Text PDFIn this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application.
View Article and Find Full Text PDF