J Am Chem Soc
December 2024
Resolving the sequence and structure of flexible biomolecules such as DNA is crucial to understanding their biological mechanisms and functions. Traditional structural biology methods remain challenging for the analysis of small and disordered biomolecules, especially those that are difficult to label or crystallize. Recent development of single-molecule tip-enhanced Raman spectroscopy (TERS) offers a label-free approach to identifying nucleobases in a single DNA chain.
View Article and Find Full Text PDFBackground: Dilated cardiomyopathy (DCM) is a severe heterogeneous cardiomyopathy characterized by cardiac enlargement and declining heart function, often leading to refractory heart failure and life-threatening outcomes, particularly prevalent in China. The challenge lies in the scarcity of targeted therapies with substantial efficacy for DCM. Additionally, traditional anti-heart failure drugs are constrained due to hypotension propensity or limited symptom improvement.
View Article and Find Full Text PDFBiosensors (Basel)
February 2023
Recently, infectious diseases, such as COVID-19, monkeypox, and Ebola, are plaguing human beings. Rapid and accurate diagnosis methods are required to preclude the spread of diseases. In this paper, an ultrafast polymerase chain reaction (PCR) equipment is designed to detect virus.
View Article and Find Full Text PDFInt J Biol Macromol
October 2020
NCF/GO hybrid nanofillers with excellent UV-shielding properties were prepared by using TEMPO-oxidized nanocellulose fibrils (NCF) and graphene oxide (GO) as raw materials; different mass ratios of NCF to GO (2: 1, 4: 1, 8: 1, and 16: 1) were used. The NCF and GO were then combined and used as a hybrid filler to study the synergistic effects on polyvinyl alcohol (PVA) nanocomposites. With 5% hybrid nanofiller, the UV-shielding performance of the PVA/NCF/GO composite film was higher than 90%.
View Article and Find Full Text PDFTip-enhanced Raman spectroscopy (TERS) is a powerful surface analysis technique that can provide subnanometer-resolved images of nanostructures with site-specific chemical fingerprints. However, due to the limitation of weak Raman signals and the resultant difficulty in achieving TERS imaging with good signal-to-noise ratios (SNRs), the conventional single-peak analysis is unsuitable for distinguishing complex molecular architectures at the subnanometer scale. Here we demonstrate that the combination of subnanometer-resolved TERS imaging and advanced multivariate analysis can provide an unbiased panoramic view of the chemical identity and spatial distribution of different molecules on surfaces, yielding high-quality chemical images despite limited SNRs in individual pixel-level spectra.
View Article and Find Full Text PDFObjective: Brown and white adipose tissue exerts pleiotropic effects on systemic energy metabolism in part by releasing endocrine factors. Neuregulin 4 (Nrg4) was recently identified as a brown fat-enriched secreted factor that ameliorates diet-induced metabolic disorders, including insulin resistance and hepatic steatosis. However, the physiological mechanisms through which Nrg4 regulates energy balance and glucose and lipid metabolism remain incompletely understood.
View Article and Find Full Text PDFThe importance of identifying DNA bases at the single-molecule level is well recognized for many biological applications. Although such identification can be achieved by electrical measurements using special setups, it is still not possible to identify single bases in real space by optical means owing to the diffraction limit. Herein, we demonstrate the outstanding ability of scanning tunneling microscope (STM)-controlled non-resonant tip-enhanced Raman scattering (TERS) to unambiguously distinguish two individual complementary DNA bases (adenine and thymine) with a spatial resolution down to 0.
View Article and Find Full Text PDFIndividual carbon nanotubes (CNTs) have been investigated by tip-enhanced Raman spectroscopy (TERS) using silver tips on the Ag(111) substrate with a low-temperature ultrahigh-vacuum scanning tunneling microscope. Thanks to the strong and highly localized plasmonic field offered by the silver nanogap, the spatial resolution of TERS on CNTs is driven down to about 0.7 nm.
View Article and Find Full Text PDFDendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models.
View Article and Find Full Text PDFUnambiguous chemical identification of individual molecules closely packed on a surface can offer the possibility to address single chemical species and monitor their behaviour at the individual level. Such a degree of spatial resolution can in principle be achieved by detecting their vibrational fingerprints using tip-enhanced Raman scattering (TERS). The chemical specificity of TERS can be combined with the high spatial resolution of scanning probe microscopy techniques, an approach that has stimulated extensive research in the field.
View Article and Find Full Text PDFThe myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge.
View Article and Find Full Text PDFChronic low-grade inflammation is emerging as a pathogenic link between obesity and metabolic disease. Persistent immune activation in white adipose tissue (WAT) impairs insulin sensitivity and systemic metabolism, in part, through the actions of proinflammatory cytokines. Whether obesity engages an adaptive mechanism to counteract chronic inflammation in adipose tissues has not been elucidated.
View Article and Find Full Text PDFA finger on the pulse: Current molecular analysis of cells and tissues routinely relies on separation, enrichment, and subsequent measurements by various assays. Now, a platform of hyperspectral stimulated Raman scattering microscopy has been developed for the fast, quantitative, and label-free imaging of biomolecules in intact tissues using spectroscopic fingerprints as the contrast mechanism.
View Article and Find Full Text PDFNonalcoholic fatty liver disease is a metabolic disorder commonly associated with obesity. A subset of nonalcoholic fatty liver disease patients further develops nonalcoholic steatohepatitis that is characterized by chronic liver injury, inflammation, and fibrosis. Recent work has implicated the autophagy pathway in the mobilization and oxidation of triglycerides from lipid droplets.
View Article and Find Full Text PDFWe demonstrate a low-cost-stimulated Raman scattering (SRS) microscope using continuous-wave (cw) lasers as excitation sources. A dual modulation scheme is used to remove the electronic background. The cw-SRS imaging of lipids in fatty liver is demonstrated by excitation of C─H stretch vibration.
View Article and Find Full Text PDFOptokinetic response (OKR) is a behavior that an animal vibrates its eyes to follow a rotating grating around it. It has been widely used to assess the visual functions of larval zebrafish. Nevertheless, the standard protocol for larval fish is not yet readily applicable in adult zebrafish.
View Article and Find Full Text PDF