Publications by authors named "Chunqing Niu"

Angiogenesis plays a vital role in the treatment of full-thickness wounds. Deferoxamine (DFO) has been employed to promote neovascularization, however, smart drug delivery systems are needed to optimize its utilization. In this study, an injectable extracellular matrix (ECM)-mimicking hydrogel (HOG@P&D) was developed by leveraging the dynamic Schiff base and hydrogen bonds among a chitosan derivative (HACC), oxidized alginate (OSA), gelatin, and DFO-loaded polydopamine nanoparticles (P&D) for efficient wound healing.

View Article and Find Full Text PDF

Sodium alginate (SA)-based implantable scaffolds with slow-release drugs have become increasingly important in the fields of biomedical and tissue engineering. However, high-molecular-weight SA is difficult to remove from the body due to the lack of SA-degrading enzymes. The very slow degradation properties of SA-based scaffolds limit their applications.

View Article and Find Full Text PDF

A self-cross-linking and biocompatible hydrogel has wide application potential in the field of tissue engineering. In this work, an easily available, biodegradable, and resilient hydrogel was prepared using a self-cross-linking method. This hydrogel was composed of -2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and oxidized sodium alginate (OSA).

View Article and Find Full Text PDF

Photothermal therapy possesses great advantages for the treatment of drug-resistant tumors. Herein, Near Infrared (NIR)-triggered photothermal nanoparticles were developed through loading indocyanine green (ICG), a kind of NIR dye, into amino group-modified silica nanoparticles (SiO-NH NPs). SiO-NH NPs were prepared with immobilization of the amino groups into the framework of silica nanoparticles (SiO NPs) by employing (3-aminopropyl)-triethoxysilane (APTES).

View Article and Find Full Text PDF

In this study, in order to obtain hydrogels with good properties for sustained release of hydrophobic drugs or for tissue engineering, poly(vinyl alcohol) (PVA)/silk fibroin (SF) semi-interpenetrating (semi-IPN) hydrogels with varied ratios of PVA/SF were enzymatically cross-linked using horseradish peroxidase. A vial inversion test determined approximate gelation times of PVA/SF hydrogels ranging from 5 to 10 min. The hydrogels with varied ratios showed differences in pore size and morphology.

View Article and Find Full Text PDF

In this study, silk fibroin (SF)/sodium alginate (SA) porous materials (PMs) with different blend ratios were generated using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as crosslinking agent by a simple freeze-dried method. Degradation experiment of SF/SA PMs have been systematically investigated up to 18 days in Collagenase IA solution at 37 °C, Phosphate buffer saline (PBS) solution without enzyme was used as a control. The results showed SF/SA 50/50 PMs exhibited a lowest rate of weight loss, about 68% of the weight retained within 18 d in Collagenase IA solution.

View Article and Find Full Text PDF

Heat-shock protein 90 (HSP90) is an abundant and highly conserved molecular chaperone, and it fulfills a housekeeping function in contributing to the folding, maintenance of structural integrity, and proper regulation of a subset of cytosolic proteins. In this study, the full-length 2693-bp cDNA of HSP90 was cloned by rapid amplification of cDNA ends (RACE) technique from the liver of rare minnow (Gobiocypris rarus) for the first time, designated as GrHSP90. The complete coding sequence of GrHSP90 is 2181 bp in length, which encodes a polypeptide of 726 amino acids with a predicted molecular mass of 83.

View Article and Find Full Text PDF