Publications by authors named "Chunqiang Sun"

Recently, photodynamic therapy (PDT) has been deemed to be the most promising strategy for cancer treatment. To improve the efficacy for PDT, nanocarriers are expected to target mitochondria that are vulnerable to toxic reactive oxygen species (ROS). Moreover, overcoming tumor hypoxia is also conducive to enhance the PDT efficacy.

View Article and Find Full Text PDF

The limited light penetration depth and tumor hypoxia are two natural shortcomings of photodynamic therapy (PDT). Overcoming these two issues within a single system is still a great challenge. Herein, photosensitizer (PS)-loaded and PEG-modified MnFe2O4-decorated large-pore mesoporous silica-coated β-NaYF4:20%Yb,2%Er@β-NaYF4 upconversion nanoparticles (UCMnFe-PS-PEG) as excellent PDT agents are successfully prepared for NIR light-mediated and O2 self-sufficient PDT.

View Article and Find Full Text PDF

As a noninvasive treatment modality, ultrasound (US)-triggered sonodynamic therapy (SDT) shows broad and promising applications to overcome the drawbacks of traditional photodynamic therapy (PDT) in combating cancer. However, the SDT efficacy is still not satisfactory without oxygen (O) assistance. In addition, there is also much space to explore the SDT-based synergistic therapeutic modalities.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) of cancers is usually inefficient due to the relatively low level of oxygen in cancer cells; therefore, it needs to combine with other treatment strategies such as chemotherapy or photothermal therapy (PTT) to achieve the best anticancer efficacy. Although porphyrin-containing materials have been widely studied for PDT, the photothermal effect is rarely reported. Herein, nanoscale porphyrin-containing covalent organic polymers (PCOPs) were produced via a room temperature solution-based aging method.

View Article and Find Full Text PDF

Attributed to the large pore size and excellent stability, the metal-organic framework (MOF), NU-1000, which is formed by the coordination of Zr cluster and 1,3,6,8-tetrakis( p-benzoic acid)pyrene (HTBAPy) ligand, has been widely studied in the catalysis research field; however, only a few reports about the biomedical application of NU-1000 could be found in the open literature. In this study, a functional ligand, tetrakis(4-carboxyphenyl)porphyrin (TCPP), was introduced into NU-1000 via a postsynthetic ligand exchange method and the resulting mixed ligand MOF has an excellent photodynamic effect. Finally, in vitro and in vivo assessment about the antitumor efficacy was investigated for the first time.

View Article and Find Full Text PDF

The oxygen-deprived environment of a solid tumor is still great restriction in achieving an efficient photodynamic therapy (PDT). In this work, we developed a smart pH-controllable and HO-responsive nanoplatform with degradable property, which was based on honeycomb manganese oxide (hMnO) nanospheres loaded with Ce6-sensitized core-shell-shell structured up-conversion nanoparticles (NaGdF:Yb/Er,Tm@NaGdF:Yb@NaNdF:Yb) (abbreviated as hMUC). In the system, the speedy breakup of the as-prepared hMnO nanostructures results in release of loaded Ce6-sensitized UCNPs under the condition of HO in acid solution.

View Article and Find Full Text PDF

A multifunctional core-shell nanocomposite based on noble metal plasmons coated with upconversion material has emerged as a promising cancer theranostics nanoplatform that integrates properties such as multimodal imaging, photothermal effects, good biocompatibility, and efficient therapy. However, a reasonable combination of plasmons and upconversion materials, as well as increased penetration depth, has always challenged the anti-cancer efficiency. Here, a unique kind of fluorescent thermal-magnetic resonance core-shell upconversion nanostructure has been designed and fabricated to simultaneously achieve photothermal therapy (PTT) and multimodal imaging.

View Article and Find Full Text PDF

Ion-doped poly(p-phenylenediamine) (Fe-ppd) nanoparticles were prepared at room temperature by using FeCl3 as an oxidant. Fe-ppd exhibited high photothermal conversion efficiency (39.27%) and excellent photostability.

View Article and Find Full Text PDF