Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and a potential therapeutic target in hematologic malignancies. Selective and transient CDK9 inhibition reduces Mcl-1 expression and induces apoptosis in Mcl-1-dependent tumor cells for survival. Here, we describe our efforts to discover a novel series of 2H-benzo[b][1,4]oxazin-3(4H)-one as CDK9 inhibitors.
View Article and Find Full Text PDFNIK is a critical regulatory protein of the non-classical NF-kB pathway, and its dysregulated activation has been proved to be one of the pathogenic factors in a variety of autoimmune diseases and inflammatory diseases. Nevertheless, its corresponding development of inhibitors faces many obstacles, including the lack of structure types of known inhibitors, immature activity evaluation methods of compounds in vitro. In this study, a series of quinoline derivatives were obtained through rational design and chemical synthesis.
View Article and Find Full Text PDFSpecific inhibition of CDK9 is considered a promising strategy for developing effective anticancer therapeutics. However, most of the reported CDK9 inhibitors are still at an early stage of development and lack selectivity against other CDKs. Herein, we discovered coumarin derivative 30i as a potent CDK9 inhibitor with high selectivity (8300-fold over CDK7).
View Article and Find Full Text PDFDespite various applications of kinase inhibitors in oncology and inflammatory diseases, the emergence of resistance still remains the major barrier to achieve long-term remission in cancer treatment. With the aim of overcoming the resistance induced by type IIB BRaf selective inhibitor vemurafenib, and further ameliorating the antiproliferative activity, a novel type IIA Pan-Raf inhibitors Ia-Io based on pyrrolo[2,3-d] pyrimidine scaffold were designed and evaluated in this work. Herein, we tried to improve the cellular potency of the target compounds by increasing their solubility.
View Article and Find Full Text PDFSelective BRaf inhibitors with DFG-in conformation have been proven effective against a subset of melanoma. However, representative inhibitor vemurafenib rapidly acquires resistance in the BRaf cells through a CRaf or BRaf dependent manner. Simultaneous targeting of all subtypes of Raf proteins offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance.
View Article and Find Full Text PDF