Publications by authors named "Chunping Qian"

Aim: Intracellular Ca(2+) ([Ca(2+)]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na(+) overload and subsequently [Ca(2+)]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca(2+)]i overload.

View Article and Find Full Text PDF

An increase of cardiac late sodium current (INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na(+)) influx and arrhythmogenesis in atria and ventricles are unclear.

View Article and Find Full Text PDF

Background/aims: Resveratrol has been demonstrated to be protective in the cardiovascular system. The aim of this study was to assess the effects of resveratrol on hydrogen peroxide (H(2)O(2))-induced increase in late sodium current (I(Na.L)) which augmented the reverse Na(+)-Ca(2+) exchanger current (I(NCX)), and the diastolic intracellular Ca(2+) concentration in ventricular myocytes.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Ligustrazine, the biologically active ingredient isolated from a popular Chinese medicinal plant, Ligusticum chuanxiong Hort. (Umbelliferae), has been used effectively to treat ischemic heart diseases, cerebrovascular and thrombotic vascular diseases since the 1970s.

Materials And Methods: At present, the effect of ligustrazine on L-type calcium current (I(Ca-L)) of ventricular myocytes remains controversial.

View Article and Find Full Text PDF

An increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) augments late sodium current (I(Na.L)) in cardiomyocytes. This study tests the hypothesis that both Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) mediate the effect of increased [Ca(2+)](i) to increase I(Na.

View Article and Find Full Text PDF