Publications by authors named "Chunpeng Wang"

Eutectic gels as important conductive polymers have promising practical applications in wearable electronic devices. However, the development of the ultra-stretchable and self-adhesive eutectic gel for multifunctional flexible sensors remains a challenge. Here, a lignin-enabled ultra-stretchable eutectic gel (LEG) integrating with excellent self-adhesion and high conductivity is prepared through polymerizable deep eutectic solvents (PDES) treated lignin followed by in-situ polymerization.

View Article and Find Full Text PDF

Conductive hydrogels have recently gained impressive attention in flexible sensing. However, their low sensing limit and poor interface matching have raised great concern during the practical application. Therefore, incorporating excellent stretchability and adhesiveness into conductive hydrogel is highly desirable but still be a huge challenge.

View Article and Find Full Text PDF

Conductive pressure sensitive adhesives (PSA) used for wearable and smart electronic sensors have attracted a significant amount of attention recently. However, achieving multifunctional conductive PSA with the feature of temperature tolerance and sustainability via a convenient and environment-friendly approach still remains challenge. Herein, a novel cellulose-rosin based poly(esterimide) (PEI) was first prepared by esterification and imidization.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers faced challenges in managing complex datasets from synchrotron computed tomography experiments and needed faster, real-time 3D reconstruction.
  • To solve this, they developed a framework that automates data processing using high-performance computing, enhancing the speed of feedback for users.
  • The successful integration of this framework at the Shanghai Synchrotron Radiation Facility improved data processing efficiency and maintained compatibility with existing beamline software.
View Article and Find Full Text PDF

Recently, the utilization of the cellulose to fabricate the multifunctional materials with aim to replace the petroleum-based product, is receiving significant attentions. However, the development of cellulose-based multifunctional materials with high mechanical strength and temperature resistance is still a challenge. Herein, the intrinsic feature and property of cellulose and rosin were creatively employed to fabricate a novel cellulose-rosin based poly(esterimide) (PEI) by esterification reaction and imidization reaction, and the obtained cellulose-rosin derived PEI exhibits superior thermal stability.

View Article and Find Full Text PDF

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine.

View Article and Find Full Text PDF

The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds.

View Article and Find Full Text PDF

Human parsing has attracted considerable research interest due to its broad potential applications in the computer vision community. In this paper, we explore several useful properties, including high-resolution representation, auxiliary guidance, and model robustness, which collectively contribute to a novel method for accurate human parsing in both simple and complex scenes. Starting from simple scenes: we propose the boundary-aware hybrid resolution network (BHRN), an advanced human parsing network.

View Article and Find Full Text PDF

All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes.

View Article and Find Full Text PDF

Wheat gluten (WG) shows great promise to synthesize environment-friendly wood adhesives. However, their weak bonding strength and poor water resistance have limited its application in the commercial wood-based panel industry. In this study, a novel WG-based adhesive was developed by constructing a multiple cross-linking network generated by covalent and non-covalent bonds.

View Article and Find Full Text PDF

Depression often coexists with many chronic diseases. However, previous studies mainly focused on the association between a single chronic disease or chronic diseases of the elderly and depression. This study included 26,177 adults aged more than 20 years old from the 2007-2018 National Health and Nutrition Examination Survey.

View Article and Find Full Text PDF

Ionic gel-based wearable electronic devices with robust sensing performance have gained extensive attention. However, the development of mechanical robustness, high conductivity, and customizable bio-based ionic gel for multifunctional wearable sensors still is a challenge. Herein, we first report the preparation of 3D printed cellulose derived ionic conductive elastomers (ICEs) with high mechanical toughness, high conductivity, and excellent environment stability through one-step photo-polymerization of polymerizable deep eutectic solvents.

View Article and Find Full Text PDF

Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.

View Article and Find Full Text PDF

Background: An anti-tumour activity has been demonstrated for α-solanine, a bioactive compound extracted from the traditional Chinese herb Solanum nigrum L. However, its efficacy in the treatment of gliomas and the underlying mechanisms remain unclear. The aim of this study was to investigate the inhibitory effects of α-solanine on glioma and elucidate its mechanisms and targets using network pharmacology, molecular docking, and molecular biology experiments.

View Article and Find Full Text PDF

Hydrogels containing renewable resources, such as hemicellulose, have received a lot of attention owing to their softness and electrical conductivity which could be applied in soft devices and wearable equipment. However, traditional hemicellulose-based hydrogels generally exhibit poor electrical conductivity and suffer from freezing at lower temperatures owing to the presence of a lot of water. In this study, we dissolved hemicellulose by employing deep eutectic solvents (DESs), which were prepared by mixing choline chloride and imidazole.

View Article and Find Full Text PDF

Scintillation-based X-ray imaging can provide convenient visual observation of absorption contrast by standard digital cameras, which is critical in a variety of science and engineering disciplines. More efficient scintillators and electronic postprocessing derived from neural networks are usually used to improve the quality of obtained images from the perspective of optical imaging and machine vision, respectively. Here, we propose to overcome the intrinsic separation of optical transmission process and electronic calculation process, integrating the imaging and postprocessing into one fused optical-electronic convolutional autoencoder network by affixing a designable optical convolutional metasurface to the scintillator.

View Article and Find Full Text PDF

Background: Breast cancer is the most common malignant tumor among women, and its incidence is increasing annually. At present, the results of the study on whether optical coherence tomography (OCT) can be used as an intraoperative margin assessment method for breast-conserving surgery (BCS) are inconsistent. We herein conducted this systematic review and meta-analysis to assess the diagnostic value of OCT in BCS.

View Article and Find Full Text PDF

Background: The relationship between anemia and depression remains controversial.

Objective: To explore the association between anemia/hemoglobin and depression.

Methods: The data for our cross-sectional study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2018.

View Article and Find Full Text PDF

Objective: The number of heart disease patients is increasing. Establishing a risk assessment model for chronic heart disease (CHD) based on risk factors is beneficial for early diagnosis and timely treatment of high-risk populations.

Methods: Four machine learning models, including logistic regression, support vector machines (SVM), random forests, and extreme gradient boosting (XGBoost), were used to evaluate the CHD among 14 971 participants in the National Health and Nutrition Examination Survey from 2011 to 2018.

View Article and Find Full Text PDF

Stretchable and tough polysaccharide-based functional hydrogels have gained popularity for various applications. However, it still remains a great challenge to simultaneously own satisfactory stretchability and toughness, particularly when incorporating renewable xylan to offer sustainability. Herein, we describe a novel stretchable and tough xylan-based conductive hydrogel utilizing the natural feature of rosin derivative.

View Article and Find Full Text PDF

Conductive hydrogels have attracted increasing attention for applications in wearable and flexible strain sensors. However, owing to their relatively weak strength, poor elasticity, and lack of anti-freezing ability, their applications have been limited. Herein, we present a skin-mimicking strategy to fabricate cellulose-enhanced, strong, elastic, highly conductive, and anti-freezing hydrogels.

View Article and Find Full Text PDF

Purpose: Advanced machine learning (ML) algorithms can assist rapid medical image recognition and realize automatic, efficient, noninvasive, and convenient diagnosis. We aim to further evaluate the diagnostic performance of ML to distinguish patients with probable Alzheimer's disease (AD) from normal older adults based on structural magnetic resonance imaging (MRI).

Methods: The Medline, Embase, and Cochrane Library databases were searched for relevant literature published up until July 2021.

View Article and Find Full Text PDF

With the development of wearable devices, the fabrication of strong, tough, antibacterial, and conductive hydrogels for sensor applications is necessary but remains challenging. Here, a skin-inspired biomimetic strategy integrated with in-situ reduction has been proposed. The self-assembly of cellulose to generate a cellulose skeleton was essential to realize the biomimetic structural design.

View Article and Find Full Text PDF

Decoupling the electronic and geometric effects has been a long cherished goal for heterogeneous catalysis due to their tangled relationship. Here, a novel orthogonal decomposition method is firstly proposed to settle this issue in p-chloronitrobenzene hydrogenation reaction on size- and shape-controlled Pt nanoparticles (NPs) carried on various supports. Results suggest Fermi levels of catalysts can be modulated by supports with varied work function (W).

View Article and Find Full Text PDF

During the fermentation of dark tea, theabrownins (TBs), carbohydrates, and other substances get irreversibly complex. Recent research on the biological activity of TBs is not based on free TBs. In the present study, some brown polyphenol oxidized polymers, the generalized TBs (TBs-C), were prepared via alkali oxidation from tea polyphenols (TP).

View Article and Find Full Text PDF