The progressive decline of the coal industry necessitates the development of effective treatment solutions for acid mine drainage (AMD), which is characterized by high acidity and elevated concentrations of heavy metals. This study proposes an innovative approach leveraging sulfate-reducing bacteria (SRB) acclimated to contaminated anaerobic environments. The research focused on elucidating the physiological characteristics and optimal growth conditions of SRB, particularly in relation to the pH level and temperature.
View Article and Find Full Text PDFThe prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors.
View Article and Find Full Text PDFEmerging contaminants (ECs), which are present in water bodies, could cause global environmental and human health problems. These contaminants originate from various sources such as hospitals, clinics, households, and industries. Additionally, they can also indirectly enter the water supply through runoff from agriculture and leachate from landfills.
View Article and Find Full Text PDFMicroplastics (MPs) in water pose a great threat to the ecological environment, but the impact of MPs on constructed wetland microbial fuel cells (CW-MFCs) has not been studied, so in order to fill the research gap and enrich the research in the field of microplastics, a 360-day experiment was designed to determine the operating status of CW-MFCs at different concentrations (0, 10, 100 and 1000 μg/L) polyethylene microplastics (PE-MPs) at different times, focusing on the changes of the CW-MFCs' ability to handle pollutants, power production performance and microbial composition. The results showed that with the accumulation of PE-MPs, the removal effect of COD and TP did not change significantly, and that the removal rate was maintained at around 90% and 77.9% respectively, within 120 d of operation.
View Article and Find Full Text PDFA constructed wetland (CW)-coupled microbial fuel cell (MFC) system was constructed to treat wastewater and generate electricity. The total phosphorus in the simulated domestic sewage was used as the treatment target, and the optimal phosphorus removal effect and electricity generation were determined by comparing the changes in substrates, hydraulic retention times, and microorganisms. The mechanism underlying phosphorus removal was also analyzed.
View Article and Find Full Text PDF